fix typos
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -98,7 +98,7 @@ A $T_0$ space is regular if for any $x\in X$ and any close set $A\subseteq X$ su
|
||||
A $T_0$ space is normal if for any disjoint closed sets, $A,B\subseteq X$, there are **disjoint open sets** $U,V$ such that $A\subseteq U$ and $B\subseteq V$.
|
||||
|
||||
<details>
|
||||
<summary></summary>
|
||||
<summary>Finer topology may not be normal</summary>
|
||||
|
||||
Let $\mathbb{R}_K$ be the topology on $\mathbb{R}$ generated by the basis:
|
||||
|
||||
@@ -106,7 +106,7 @@ $$
|
||||
\mathcal{B}=\{(a,b)\mid a,b\in \mathbb{R},a<b\}\cup \{(a,b)-K\mid a,b\in \mathbb{R},a<b\}
|
||||
$$
|
||||
|
||||
where $K=\coloneqq \{\frac{1}{n}\mid n\in \mathbb{N}\}$.
|
||||
where $K\coloneqq \{\frac{1}{n}\mid n\in \mathbb{N}\}$.
|
||||
|
||||
**This is finer than the standard topology** on $\mathbb{R}$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user