diff --git a/pages/CSE559A/CSE559A_L6.md b/pages/CSE559A/CSE559A_L6.md index cb092dd..44f1565 100644 --- a/pages/CSE559A/CSE559A_L6.md +++ b/pages/CSE559A/CSE559A_L6.md @@ -118,7 +118,7 @@ BRDF dataset: #### Digital Camera block diagram -![Digital Camera block diagram](https://static.notenextra.trance-0.com/images/CSE559A/DigitalCameraBlockDiagram.png) +![Digital Camera block diagram](https://static.notenextra.trance-0.com/CSE559A/DigitalCameraBlockDiagram.png) Scanning protocols: @@ -126,3 +126,88 @@ Scanning protocols: - Interlaced: odd and even lines are exposed at different times - Rolling shutter: each line is exposed as it is read out +#### Eye + +- Pupil +- Iris +- Retina +- Rods and cones +- ... + +#### Eye Movements + +- Saccade + - Can be consciously controlled. Related to perceptual attention. + - 200ms to initiation, 20 to 200ms to carry out. Large amplitude. +- Smooth pursuit + - Tracking an object + - Difficult w/o an object to track! +- Microsaccade and Ocular microtremor (OMT) + - Involuntary. Smaller amplitude. Especially evident during prolonged + fixation. + +#### Contrast Sensitivity + +- Uniform contrast image content, with increasing frequency +- Why not uniform across the top? +- Low frequencies: harder to see because of slower intensity changes +- Higher frequencies: harder to see because of ability of our visual system to resolve fine features + +### Color Perception + +Visible light spectrum: 380 to 780 nm + +- 400 to 500 nm: blue +- 500 to 600 nm: green +- 600 to 700 nm: red + +#### HSV model + +We use Gaussian functions to model the sensitivity of the human eye to different wavelengths. + +- Hue: color (the wavelength of the highest peak of the sensitivity curve) +- Saturation: color purity (the variance of the sensitivity curve) +- Value: color brightness (the highest peak of the sensitivity curve) + +#### Color Sensing in Camera (RGB) + +- 3-chip vs. 1-chip: quality vs. cost + +Bayer filter: + +- Why more green? + - Human eye is more sensitive to green light. + +#### Color spaces + +Images in python: + +As matrix. + +```python +import matplotlib.pyplot as plt + +from mpl_toolkits.mplot3d import Axes3D +from skimage import io + +def plot_rgb_3d(image_path): + image = io.imread(image_path) + r, g, b = image[:,:,0], image[:,:,1], image[:,:,2] + fig = plt.figure() + ax = fig.add_subplot(111, projection='3d') + ax.scatter(r.flatten(), g.flatten(), b.flatten(), c=image.reshape(-1, 3)/255.0, marker='.') + ax.set_xlabel('Red') + ax.set_ylabel('Green') + ax.set_zlabel('Blue') + plt.show() + +plot_rgb_3d('image.jpg') +``` + +Other color spaces: + +- YCbCr (fast to compute, usually used in TV) +- HSV +- L\*a\*b\* (CIELAB, perceptually uniform color space) + +Most information is in the intensity channel. diff --git a/pages/Math4121/Math4121_L8.md b/pages/Math4121/Math4121_L8.md index ea02e1a..a4e76ab 100644 --- a/pages/Math4121/Math4121_L8.md +++ b/pages/Math4121/Math4121_L8.md @@ -1 +1,83 @@ -# Lecture 8 \ No newline at end of file +# Lecture 8 + +## Continue on Riemann-Stieltjes Integral + +### Integrable Functions + +#### Theorem 6.9 + +If $f$ is monotonic (increasing) on $[a, b]$ and $\alpha$ is continuous on $[a, b]$, then $f\in \mathscr{R}(\alpha)$ on $[a, b]$. + +Proof: + +Given a partition $P = \{a = x_0, x_1, \cdots, x_n = b\}$, we have + +$$ +M_i = \sup_{x\in [x_{i-i}, x_i]} f(x)\leq f(x_{i}) +$$ + +$$ +m_i = \inf_{x\in [x_{i-1}, x_i]} f(x)\geq f(x_{i-1}) +$$ + +So, + +$$ +\begin{aligned} +U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i)\Delta \alpha_i \\ +&\leq \sum_{i=1}^{n} \left[ f(x_i) - f(x_{i-1}) \right] \left[ \alpha(x_i) - \alpha(x_{i-1}) \right] \\ + +&\leq \sum_{i=1}^{n} \left[ f(x_i) - f(x_{i-1}) \right](\sup_{x\in [x_{i-1}, x_i]} \alpha(x) - \inf_{x\in [x_{i-1}, x_i]} \alpha(x)) \\ +&=U(P,\alpha,f) - L(P,\alpha,f) +\end{aligned} +$$ + +By Theorem 6.8, $\alpha\in \mathscr{R}(f)$, so for any $\epsilon > 0$, there exists a partition $P$ such that + +$$ +U(P,\alpha,f) - L(P,\alpha,f) < \epsilon +$$ + +Therefore, $U(P,f,\alpha) - L(P,f,\alpha)0$ such that $|f(x)|\leq M$ for all $x\in [a, b]$. + +Let $\epsilon > 0$. Since $\alpha$ is continuous on $[a, b]$, we can find some intervals $[u_j,v_j]\subset (a,b)$ and $y_j\in [u_j,v_j]$ and $|\alpha(u_j) - \alpha(v_j)| < \epsilon$ for all $j=1,2,\cdots,J$. + +Set $K=[a,b]\setminus \bigcup_{j=1}^{J}(u_j,v_j)$. Since $K$ is compact, $f$ is uniformly continuous on $K$. Hence, there exists a $\delta > 0$ such that for any $s,t\in K$ and $|s-t|<\delta$, we have $|f(s)-f(t)|<\epsilon$. + +Let $P=\{x_0,x_1,\cdots,x_n=b\}$ containing all the points $u_j,v_j,\forall j=1,2,\cdots,J$ and $\Delta x_i<\delta,\forall x_i\notin \{u_j,v_j,\forall j=1,2,\cdots,J\}$. + +Then, + +If $x_i=u_j$ for some $j=1,2,\cdots,J$, then $M_i-m_i\leq M:=2\sup|f_x|$. But $\Delta \alpha_i\leq \epsilon$ for all $i=1,2,\cdots,n$. + +If $x_i\neq u_j$ for all $j=1,2,\cdots,J$, then by uniform continuity of $f$ on $K$, we have $M_i-m_i\leq \epsilon$. + +In either case, we have + +$$ +\begin{aligned} +U(P,f,\alpha) - L(P,f,\alpha) &= \sum_{i=1}^{n} (M_i - m_i)\Delta \alpha_i \\ +&\leq J M\epsilon + \sum_{i=1}^{n} \epsilon \Delta \alpha_i \\ +&= \epsilon(J M + \sum_{i=1}^{n} \Delta \alpha_i) +\end{aligned} +$$ + +Since $\epsilon$ is arbitrary, we have $U(P,f,\alpha) - L(P,f,\alpha) < \epsilon$. + +Therefore, $f\in \mathscr{R}(\alpha)$ on $[a, b]$. + +EOP + +#### Theorem 6.11 + +Suppose $f\in \mathscr{R}(\alpha)$ on $[a, b]$, $m\leq f(x)\leq M$ for all $x\in [a, b]$, and $\phi$ is continuous on $[m, M]$, and let $h(x)=\phi(f(x))$ on $[a, b]$. Then $h\in \mathscr{R}(\alpha)$ on $[a, b]$.