proof format updates using gfm
This commit is contained in:
@@ -142,7 +142,8 @@ How many digits are in each integer?
|
||||
|
||||
Claim 1: If Subset Sum has a solution, then $\Psi$ is satisfiable.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Say $S'$ is a solution to Subset Sum. Then there exists a subset $S' \subseteq S$ such that $\sum_{a_i\in S'} a_i = t$. Here is an assignment of truth values to variables in $\Psi$ that satisfies $\Psi$:
|
||||
|
||||
@@ -154,11 +155,12 @@ This is a valid assignment since:
|
||||
- We pick either $v_i$ or $\overline{v_i}$
|
||||
- For each clause, at least one literal is true
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
Claim 2: If $\Psi$ is satisfiable, then Subset Sum has a solution.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
If $A$ is a satisfiable assignment for $\Psi$, then we can construct a subset $S'$ of $S$ such that $\sum_{a_i\in S'} a_i = t$.
|
||||
|
||||
@@ -174,7 +176,7 @@ Say $t=\sum$ elements we picked from $S$.
|
||||
- If $q_j=2$, then $z_j\in S'$
|
||||
- If $q_j=3$, then $y_j\in S'$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Example 2: 3 Color
|
||||
|
||||
@@ -210,15 +212,16 @@ Key for dangler design:
|
||||
|
||||
Connect to all $v_i$ with true to the same color. and connect to all $v_i$ with false to another color.
|
||||
|
||||
'''
|
||||
TODO: Add dangler design image here.
|
||||
'''
|
||||
> [!TIP]
|
||||
>
|
||||
> TODO: Add dangler design image here.
|
||||
|
||||
#### Proof of reduction for 3-Color
|
||||
|
||||
Direction 1: If $\Psi$ is satisfiable, then $G$ is 3-colorable.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Say $\Psi$ is satisfiable. Then $v_i$ and $\overline{v_i}$ are in different colors.
|
||||
|
||||
@@ -228,13 +231,16 @@ For each dangler color is connected to blue, all literals cannot be blue.
|
||||
|
||||
...
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
Direction 2: If $G$ is 3-colorable, then $\Psi$ is satisfiable.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
QED
|
||||
|
||||
|
||||
</details>
|
||||
|
||||
### Example 3:Hamiltonian cycle problem (HAMCYCLE)
|
||||
|
||||
@@ -242,9 +248,7 @@ Input: $G(V,E)$
|
||||
|
||||
Output: Does $G$ have a Hamiltonian cycle? (A cycle that visits each vertex exactly once.)
|
||||
|
||||
Proof is too hard.
|
||||
|
||||
but it is an existing NP-complete problem.
|
||||
Proof is too hard. But it is an existing NP-complete problem.
|
||||
|
||||
## On lecture
|
||||
|
||||
|
||||
Reference in New Issue
Block a user