proof format updates using gfm

This commit is contained in:
Trance-0
2025-08-29 15:51:24 -05:00
parent 3fd0a59837
commit 7bc7206604
11 changed files with 195 additions and 52 deletions

View File

@@ -260,7 +260,8 @@ $$
Claim: the solution to this recurrence is $E[T(n)]=O(n\log n)$ or $T(n)=c'n\log n+1$.
Proof:
<details>
<summary>Proof</summary>
We prove by induction.
@@ -296,10 +297,13 @@ If $c'\geq 8c$, then $T(n)\leq c'n\log n+1$.
$E[T(n)]\leq c'n\log n+1=O(n\log n)$
QED
</details>
A more elegant proof:
<details>
<summary>Proof</summary>
Let $X_{ij}$ be an indicator random variable that is $1$ if element of rank $i$ is compared to element of rank $j$.
Running time: $$X=\sum_{i=0}^{n-2}\sum_{j=i+1}^{n-1}X_{ij}$$
@@ -344,6 +348,5 @@ E[X]&=\sum_{i=0}^{n-2}\sum_{j=i+1}^{n-1}\frac{2}{j-i+1}\\
\end{aligned}
$$
QED
</details>