proof format updates using gfm
This commit is contained in:
@@ -86,7 +86,10 @@ f(N,e):\mathbb{Z}_N^*\to \mathbb{Z}_N^*
|
||||
$$
|
||||
is a bijection.
|
||||
|
||||
Proof: Suppose $x_1^e\equiv x_2^e\mod n$
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose $x_1^e\equiv x_2^e\mod n$
|
||||
|
||||
Then let $d=e^{-1}\mod \phi(N)$ (exists b/c $e\in\phi(N)^*$)
|
||||
|
||||
@@ -98,13 +101,14 @@ $x_1\equiv x_2\mod N$
|
||||
|
||||
So it's one-to-one.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
Let $y\in \mathbb{Z}_N^*$, letting $x=y^d\mod N$, where $d\equiv e^{-1}\mod \phi(N)$
|
||||
|
||||
$x^e\equiv (y^d)^e \equiv y\mod n$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
It's easy to sample from $I$:
|
||||
|
||||
@@ -130,7 +134,7 @@ By RSA assumption
|
||||
|
||||
The second equality follows because for any finite $D$ and bijection $f:D\to D$, sampling $y\in D$ directly is equivalent to sampling $x\gets D$, then computing $y=f(x)$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem If inverting RSA is hard, then factoring is hard.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user