proof format updates using gfm

This commit is contained in:
Trance-0
2025-08-29 15:51:24 -05:00
parent 3fd0a59837
commit 7bc7206604
11 changed files with 195 additions and 52 deletions

View File

@@ -86,7 +86,10 @@ f(N,e):\mathbb{Z}_N^*\to \mathbb{Z}_N^*
$$
is a bijection.
Proof: Suppose $x_1^e\equiv x_2^e\mod n$
<details>
<summary>Proof</summary>
Suppose $x_1^e\equiv x_2^e\mod n$
Then let $d=e^{-1}\mod \phi(N)$ (exists b/c $e\in\phi(N)^*$)
@@ -98,13 +101,14 @@ $x_1\equiv x_2\mod N$
So it's one-to-one.
QED
</details>
Let $y\in \mathbb{Z}_N^*$, letting $x=y^d\mod N$, where $d\equiv e^{-1}\mod \phi(N)$
$x^e\equiv (y^d)^e \equiv y\mod n$
Proof:
<details>
<summary>Proof</summary>
It's easy to sample from $I$:
@@ -130,7 +134,7 @@ By RSA assumption
The second equality follows because for any finite $D$ and bijection $f:D\to D$, sampling $y\in D$ directly is equivalent to sampling $x\gets D$, then computing $y=f(x)$.
QED
</details>
#### Theorem If inverting RSA is hard, then factoring is hard.