proof format updates using gfm

This commit is contained in:
Trance-0
2025-08-29 15:51:24 -05:00
parent 3fd0a59837
commit 7bc7206604
11 changed files with 195 additions and 52 deletions

View File

@@ -82,7 +82,10 @@ The NBT(Next bit test) is complete.
If $\{X_n\}$ on $\{0,1\}^{l(n)}$ passes NBT, then it's pseudorandom.
Ideas of proof: full proof is on the text.
<details>
<summary>Ideas of proof</summary>
Full proof is on the text.
Our idea is that we want to create $H^{l(n)}_n=\{X_n\}$ and $H^0_n=\{U_{l(n)}\}$
@@ -119,7 +122,7 @@ $\mathcal{D}$ can distinguish $x_{i+1}$ from a truly random $U_{i+1}$, knowing t
So $\mathcal{D}$ can predict $x_{i+1}$ from $x_1\dots x_i$ (contradicting with that $X$ passes NBT)
QED
</details>
## Pseudorandom Generator