update
This commit is contained in:
154
pages/Math416/Math416_L17.md
Normal file
154
pages/Math416/Math416_L17.md
Normal file
@@ -0,0 +1,154 @@
|
||||
# Math416 Lecture 17
|
||||
|
||||
## Continue on Chapter 7
|
||||
|
||||
### Harmonic conjugates
|
||||
|
||||
#### Theorem 7.18
|
||||
|
||||
Existence of harmonic conjugates.
|
||||
|
||||
Let $u$ be a harmonic function on $\Omega$ a convex open subset in $\mathbb{C}$. Then there exists $g\in O(\Omega)$ such that $\text{Re}(g)=u$ on $\Omega$.
|
||||
|
||||
Moreover, $g$ is unique up to an imaginary additive constant.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $f=2\frac{\partial u}{\partial z}=\frac{\partial u}{\partial x}-i\frac{\partial u}{\partial y}$
|
||||
|
||||
$f$ is holomorphic on $\Omega$
|
||||
|
||||
Since $\frac{\partial u}{\partial \overline{z}}=0$ on $\Omega$, $f$ is holomorphic on $\Omega$
|
||||
|
||||
So $f=g'$, fix $z_0\in \Omega$, we can choose $q(z_0)=u(z_0)$ and $g=u_1+iv_1$, $g'=\frac{\partial u_1}{\partial x}+i\frac{\partial v_1}{\partial x}=\frac{\partial v_1}{\partial y}-i\frac{\partial u_1}{\partial y}=\frac{\partial u}{\partial x}-i\frac{\partial u}{\partial y}$, given that $\frac{\partial u_1}{\partial x}=\frac{\partial u}{\partial x}$ and $\frac{\partial u_1}{\partial y}=\frac{\partial u}{\partial y}$
|
||||
|
||||
So $u_1=u$ on $\Omega$
|
||||
|
||||
$\text{Re}(g)=u_1=u$ on $\Omega$
|
||||
|
||||
If $u+iv$ is holomorphic, $v$ is harmonic conjugate of $u$
|
||||
|
||||
QED
|
||||
|
||||
### Corollary For Harmonic functions
|
||||
|
||||
#### Theorem 7.19
|
||||
|
||||
Harmonic functions are $C^\infty$
|
||||
|
||||
$C^\infty$ is a local property.
|
||||
|
||||
#### Theorem 7.20
|
||||
|
||||
Mean value property for harmonic functions.
|
||||
|
||||
Let $u$ be harmonic on an open set of $\Omega$
|
||||
|
||||
Then $u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}u(z_0+re^{i\theta})d\theta$
|
||||
|
||||
Proof:
|
||||
|
||||
$\text{Re}g(z_0)=\frac{1}{2\pi}\int_0^{2\pi}\text{Re}g(z_0+re^{i\theta})d\theta$
|
||||
|
||||
QED
|
||||
|
||||
#### Theorem 7.21
|
||||
|
||||
Identity theorem for harmonic functions.
|
||||
|
||||
Let $u$ be harmonic on a domain $\Omega$. If $u=0$ on some open set $G\subset \Omega$, then $u\equiv 0$ on $\Omega$.
|
||||
|
||||
_If $u=v$ on $G\subset \Omega$, then $u=v$ on $\Omega$._
|
||||
|
||||
Proof:
|
||||
|
||||
We proceed by contradiction.
|
||||
|
||||
Let $H=\{z\in \Omega:u(z)=0\}$ be the interior of $G$
|
||||
|
||||
$H$ is open and nonempty. If $H\neq \Omega$, then $\exists z_0\in \partial H\cap \Omega$. Then $\exists r>0$ such that $B_r(z_0)\subset \Omega$ such that $\exists g\in O(B_r(z_0))$ such that $\text{Re}g=u$ on $B_r(z_0)$
|
||||
|
||||
Since $H\cap B_r(z_0)$ is nonempty open set, then $g$ is constant on $H\cap B_r(z_0)$
|
||||
|
||||
So $g$ is constant on $B_r(z_0)$
|
||||
|
||||
So $u$ is constant on $B_r(z_0)$
|
||||
|
||||
So $D(z_0,r)\subset H$. This is a contradiction that $z_0\in \partial H$
|
||||
|
||||
QED
|
||||
|
||||
#### Theorem 7.22
|
||||
|
||||
Maximum principle for harmonic functions.
|
||||
|
||||
A non-constant harmonic function on a domain cannot attain a maximum or minimum on the interior of the domain.
|
||||
|
||||
Proof:
|
||||
|
||||
We proceed by contradiction.
|
||||
|
||||
Suppose $u$ attains a maximum at $z_0\in \Omega$.
|
||||
|
||||
For all $z$ in the neighborhood of $z_0$, $u(z)<u(z_0)$. We can choose $r>0$ such that $B_r(z_0)\subset \Omega$.
|
||||
|
||||
By the mean value property, $u(z_0)=\frac{1}{2\pi}\int_0^{2\pi}u(z_0+re^{i\theta})d\theta$
|
||||
|
||||
So $0= \frac{1}{2\pi}\int_0^{2\pi}u[z_0+re^{i\theta}-u(z_0)]d\theta$
|
||||
|
||||
We can prove the minimum is similar.
|
||||
|
||||
QED
|
||||
|
||||
> Maximum/minimum (modulus) principle for holomorphic functions.
|
||||
>
|
||||
> If $f$ is holomorphic on a domain $\Omega$ and attains a maximum on the boundary of $\Omega$, then $f$ is constant on $\Omega$.
|
||||
>
|
||||
> Except at $z_0\in \Omega$ where $f'(z_0)=0$, if $f$ attains a minimum on the boundary of $\Omega$, then $f$ is constant on $\Omega$.
|
||||
|
||||
### Dirichlet problem for domain $D$
|
||||
|
||||
Let $h: \partial D\to \mathbb{R}$ be a continuous function. Is there a harmonic function $u$ on $D$ such that $u$ is continuous on $\overline{D}$ and $u|_{\partial D}=h$?
|
||||
|
||||
We can always solve the problem for the unit disk.
|
||||
|
||||
$$
|
||||
u(z)=\frac{1}{2\pi}\int_0^{2\pi}h(e^{i t})\text{Re}\left(\frac{e^{it}+z}{e^{it}-z}\right)dt
|
||||
$$
|
||||
|
||||
Let $z=re^{i\theta}$
|
||||
|
||||
$$
|
||||
\text{Re}\left(\frac{e^{it}+re^{i\theta}}{e^{it}-re^{i\theta}}\right)=\frac {1-r^2}{1-2r\cos(\theta-t)+r^2}
|
||||
$$
|
||||
|
||||
_This is called Poisson kernel._
|
||||
|
||||
$Pr(\theta, t)>0$ and $\int_0^{2\pi}Pr(\theta, t)dt=1$, $\forall r,t$
|
||||
|
||||
## Chapter 8 Laurent series
|
||||
|
||||
when $\sum_{n=-\infty}^{\infty}a_n(z-z_0)^n$ converges?
|
||||
|
||||
Claim $\exists R>0$ such that $\sum_{n=-\infty}^{\infty}a_n(z-z_0)^n$ converges if $|z-z_0|<R$ and diverges if $|z-z_0|>R$
|
||||
|
||||
Proof:
|
||||
|
||||
Let $u=\frac{1}{z-z_0}$
|
||||
|
||||
$\sum_{n=0}^{\infty}a_n(z-z_0)^n$ has radius of convergence $\frac{1}{R}$
|
||||
|
||||
So the series converges if $|u|<\frac{1}{R}$
|
||||
|
||||
So $|z-z_0|=\frac{1}{|u|}>\frac{1}{\frac{1}{R}}=R$
|
||||
|
||||
QED
|
||||
|
||||
### Laurent series
|
||||
|
||||
A Laurent series is a series of the form $\sum_{n=-\infty}^{\infty}a_n(z-z_0)^n$
|
||||
|
||||
The series converges in some annulus shape $A=\{z:r_1<|z-z_0|<r_2\}$
|
||||
|
||||
The annulus is called the region of convergence of the Laurent series.
|
||||
|
||||
@@ -20,4 +20,5 @@ export default {
|
||||
Math416_L14: "Complex Variables (Lecture 14)",
|
||||
Math416_L15: "Complex Variables (Lecture 15)",
|
||||
Math416_L16: "Complex Variables (Lecture 16)",
|
||||
Math416_L17: "Complex Variables (Lecture 17)",
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user