Update Math4302_L4.md

This commit is contained in:
Zheyuan Wu
2026-01-21 18:45:40 -06:00
parent b57c9e2f8d
commit 838536bd1e

View File

@@ -1,2 +1,133 @@
# Math4302 Modern Algebra (Lecture 4) # Math4302 Modern Algebra (Lecture 4)
## Groups
### Group Isomorphism
#### Definition of isomorphism
Let $(G_1,*_1)$ and $(G_2,*_2)$ be two groups. Then $(G_1,*_1)$ and $(G_2,*_2)$ are isomorphic if there exists a bijection $f:G_1\to G_2$ such that for all $x,y\in G_1$, $f(x*y)=f(x)*f(y)$. We say that $(G_1,*_1)$ is isomorphic to $(G_2,*_2)$.
$$
(G_1,*_1)\simeq (G_2,*_2)
$$
<details>
<summary>Example and non-example for isomorphism</summary>
As we have seen in class, $(\mathbb{Z}_4,+)$ and $(\{1,-1,i,-i\},*)$ are isomorphic.
---
$(\mathbb{Z},+)$ and $(\mathbb{R},+)$ are not isomorphic. There is no bijection from $(\mathbb{Z},+)$ to $(\mathbb{R},+)$.
---
Let $M_2(\mathbb{R})$ denotes the set of $2\times 2$ matrices with addition. Then $(\mathbb{R}^4,+)$ and $(M_2(\mathbb{R}),+)$ are isomorphic.
---
$(\mathbb{Z},+)$ and $(\mathbb{Q},+)$ are not isomorphic.
- There exists bijection mapping $\mathbb{Z}\to \mathbb{Q}$, but
Suppose we have $f(1)=a\in \mathbb{Q}$, so there exists unique element $f(x), x\in \mathbb{Z}$ such that $f(x)=\frac{a}{2}$, if such function $f$ is isomorphic (preserves addition), then $f(2x)=f(x)+f(x)=a$. So $2x=1$, such $x$ does not exist in $\mathbb{Z}$.
</details>
#### Isomorphism of Groups defines an equivalence relation
Isomorphism of groups is an equivalence relation.
1. Reflexive: $(G_1,*_1)\simeq (G_1,*_1)$
2. Symmetric: $(G_1,*_1)\simeq (G_2,*_2)\implies (G_2,*_2)\simeq (G_1,*_1)$
3. Transitive: $(G_1,*_1)\simeq (G_2,*_2)\land (G_2,*_2)\simeq (G_3,*_3)\implies (G_1,*_1)\simeq (G_3,*_3)$
Easy to prove using bijective maps and definition of isomorphism.
#### Some fun facts
<!-- Up to isomorphism, there is only one group of order $m$ for any $m\in\mathbb{N}$. That is $(\mathbb{Z}_m,+)$. -->
For any prime number, there is only one group of order $p$ for any $p\in\mathbb{N}$.
[OEIS A000001](https://oeis.org/A000001)
#### Example of non-abelian finite groups
Permutations (Symmetric groups) $S_n$.
Let $A$ be a set of $n$ elements, a permutation of $A$ is a bijection from $A$ to $A$.
$\sigma: A\to A$
Let $A$ be a finite set, $A=\{1,2,...,n\}$. Then there are $n!$ permutations of $A$.
We can denote each permutation on $A=\{1,2,...,n\}$ by
$$
\sigma=\begin{pmatrix}
1&2&...&n\\
\sigma(1)&\sigma(2)&...&\sigma(n)
\end{pmatrix}
$$
#### Symmetric Groups
The set of permutation on a set $A$ form a group under function composition.
- Identity: $\sigma_{id}=\begin{pmatrix}
1&2&...&n\\
1&2&...&n
\end{pmatrix}$
- Inversion: If $f: A\to A$ is a bijection, then $f^{-1}: A\to A$ is a bijection and is the inverse of $f$.
- Associativity: $(\sigma_1*\sigma_2)*\sigma_3=\sigma_1*(\sigma_2*\sigma_3)$
$|S_n|=n!$
When $n=1,2$, the group is abelian.
but when $n=3$, we have some $\sigma,\tau\in S_3$ such that $\sigma*\tau\neq \tau*\sigma$.
Let $\sigma=\begin{pmatrix}
1&2&3\\
2&3&1
\end{pmatrix}$ and $\tau=\begin{pmatrix}
1&2&3\\
3&2&1\\
\end{pmatrix}$, then $\sigma*\tau=\begin{pmatrix}
1&2&3\\
1&3&2
\end{pmatrix}$ and $\tau*\sigma=\begin{pmatrix}
1&2&3\\
2&1&3
\end{pmatrix}$.
Therefore $\tau*\sigma\neq \sigma*\tau$.
Then we have a group of order $3!=6$ that is not abelian.
For any $n\geq 3$, $S_n$ is not abelian. (Proof by induction, keep $\sigma,\tau$ extra entries being the same$).
Another notation for permutations is using the cycle.
Suppose we have $\sigma=\begin{pmatrix}
1&2&3&4\\
2&3&1&4\\
\end{pmatrix}$, then we have the cycle $(1,2,3)(4)$.
this means we send $1\to 2\to 3\to 1$ and $4\to 4$.
Some case we ignore $(4)$ and just write $(1,2,3)$.
> [!TIP]
>
> From now on, we use $G$ to denote $(G,*)$ and $ab$ to denote $a*b$ to save chalks.
>
> If $G$ is abelian, we use $+$ to denote the group operations
>
> - Instead of $a*b$ or $ab$, we write $a+b$.
> - Instead of $a^{-1}$, we write $-a$.
> - Instead of $e$, we write $0$.
> - Instead of $a^{n}$, we write $na$.