From 83ada2df2ac8053f32667bcc53304d9ab634b6ef Mon Sep 17 00:00:00 2001
From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com>
Date: Wed, 4 Feb 2026 13:51:19 -0600
Subject: [PATCH] updates
---
content/Math4202/Math4202_L10.md | 100 +++++++++++++++++++++++
content/Math4202/_meta.js | 1 +
content/Math4302/Math4302_L10.md | 131 +++++++++++++++++++++++++++++++
content/Math4302/_meta.js | 2 +
4 files changed, 234 insertions(+)
create mode 100644 content/Math4202/Math4202_L10.md
create mode 100644 content/Math4302/Math4302_L10.md
diff --git a/content/Math4202/Math4202_L10.md b/content/Math4202/Math4202_L10.md
new file mode 100644
index 0000000..ff5d9ae
--- /dev/null
+++ b/content/Math4202/Math4202_L10.md
@@ -0,0 +1,100 @@
+# Math4202 Topology II (Lecture 10)
+
+## Algebraic Topology
+
+### Path homotopy
+
+
+#### Theorem for properties of product of paths
+
+1. If $f\simeq_p f_1, g\simeq_p g_1$, then $f*g\simeq_p f_1*g_1$. (Product is well-defined)
+2. $([f]*[g])*[h]=[f]*([g]*[h])$. (Associativity)
+3. Let $e_{x_0}$ be the constant path from $x_0$ to $x_0$, $e_{x_1}$ be the constant path from $x_1$ to $x_1$. Suppose $f$ is a path from $x_0$ to $x_1$.
+ $$
+ [e_{x_0}]*[f]=[f],\quad [f]*[e_{x_1}]=[f]
+ $$
+ (Right and left identity)
+4. Given $f$ in $X$ a path from $x_0$ to $x_1$, we define $\bar{f}$ to be the path from $x_1$ to $x_0$ where $\bar{f}(t)=f(1-t)$.
+ $$
+ f*\bar{f}=e_{x_0},\quad \bar{f}*f=e_{x_1}
+ $$
+ $$
+ [f]*[\bar{f}]=[e_{x_0}],\quad [\bar{f}]*[f]=[e_{x_1}]
+ $$
+
+
+Proof
+
+(1) If $f\simeq_p f_1$, $g\simeq_p g_1$, then $f*g\simeq_p f_1*g_1$.
+
+Let $F$ be homotopy between $f$ and $f_1$, $G$ be homotopy between $g$ and $g_1$.
+
+We can define
+
+$$
+F*G:[0,1]\times [0,1]\to X,\quad F*G(s,t)=\left(F(-,t)*G(-,t)\right)(s)=\begin{cases}
+F(2s,t) & 0\leq s\leq \frac{1}{2}\\
+G(2s-1,t) & \frac{1}{2}\leq s\leq 1
+\end{cases}
+$$
+
+$F*G$ is a homotopy between $f*g$ and $f_1*g_1$.
+
+We can check this by enumerating the cases from definition of homotopy.
+
+---
+
+(2) $([f]*[g])*[h]=[f]*([g]*[h])$.
+
+For $f*(g*h)$, along the interval $[0,\frac{1}{2}]$ we map $x_1\to x_2$, then along the interval $[\frac{1}{2},\frac{3}{4}]$ we map $x_2\to x_3$, then along the interval $[\frac{3}{4},1]$ we map $x_3\to x_4$.
+
+For $(f*g)*h$, along the interval $[0,\frac{1}{4}]$ we map $x_1\to x_2$, then along the interval $[\frac{1}{4},\frac{1}{2}]$ we map $x_2\to x_3$, then along the interval $[\frac{1}{2},1]$ we map $x_3\to x_4$.
+
+We can construct the homotopy between $f*(g*h)$ and $(f*g)*h$ as follows.
+
+Let $f((4-2t)s)$ for $F(s,t)$,
+
+when $t=0$, $F(s,0)=f(4s)\in f*(g*h)$, when $t=1$, $F(s,1)=f(2s)\in (f*g)*h$.
+
+....
+
+_We make the linear maps between $f*(g*h)$ and $(f*g)*h$ continuous, then $f*(g*h)\simeq_p (f*g)*h$. With our homotopy constructed above_
+
+---
+
+(3) $e_{x_0}*f\simeq_p f\simeq_p f*e_{x_1}$.
+
+We can construct the homotopy between $e_{x_0}*f$ and $f$ as follows.
+
+$$
+H(s,t)=\begin{cases}
+x_0 & t\geq 2s\\
+f(2s-t) & t\leq 2s
+\end{cases}
+$$
+
+or you may induct from $f(\frac{s-t/2}{1-t/2})$ if you like.
+
+---
+
+(4) $f*\bar{f}=e_{x_0},\quad \bar{f}*f=e_{x_1}$.
+
+Note that we don't need to reach $x_1$ every time.
+
+$f_t=f(ts)$ $s\in[0,\frac{1}{2}]$.
+
+$\bar{f}_t=\bar{f}(1-ts)$ $s\in[\frac{1}{2},1]$.
+
+
+
+> [!CAUTION]
+>
+> Homeomorphism does not implies homotopy automatically.
+
+#### Definition for the fundamental group
+
+The fundamental group of $X$ at $x$ is defined to be
+
+$$
+(\Pi_1(X,x),*)
+$$
\ No newline at end of file
diff --git a/content/Math4202/_meta.js b/content/Math4202/_meta.js
index f126ca7..383919e 100644
--- a/content/Math4202/_meta.js
+++ b/content/Math4202/_meta.js
@@ -12,4 +12,5 @@ export default {
Math4202_L7: "Topology II (Lecture 7)",
Math4202_L8: "Topology II (Lecture 8)",
Math4202_L9: "Topology II (Lecture 9)",
+ Math4202_L10: "Topology II (Lecture 10)",
}
diff --git a/content/Math4302/Math4302_L10.md b/content/Math4302/Math4302_L10.md
new file mode 100644
index 0000000..75385e3
--- /dev/null
+++ b/content/Math4302/Math4302_L10.md
@@ -0,0 +1,131 @@
+# Math4302 Modern Algebra (Lecture 9)
+
+## Groups
+
+### Group homomorphism
+
+Recall the kernel of a group homomorphism is the set
+
+$$
+\operatorname{ker}(\phi)=\{a\in G|\phi(a)=e'\}
+$$
+
+
+Example
+
+Let $\phi:(\mathbb{Z},+)\to (\mathbb{Z}_n,+)$ where $\phi(k)=k\mod n$.
+
+The kernel of $\phi$ is the set of all multiples of $n$.
+
+
+
+#### Theorem for one-to-one group homomorphism
+
+$\phi:G\to G'$ is one-to-one if and only if $\operatorname{ker}(\phi)=\{e\}$
+
+If $\phi$ is one-to-one, then $\phi(G)\leq G'$, $G$ is isomorphic ot $\phi(G)$ (onto automatically).
+
+If $A$ is a set, then a permutation of $A$ is a bijection $f:A\to A$.
+
+#### Cayley's Theorem
+
+Every group $G$ is isomorphic to a subgroup of $S_A$ for some $A$ (and if $G$ is finite then $A$ can be taken to be finite.)
+
+
+Example
+
+$D_n\leq S_n$, so $A=\{1,2,\cdots,n\}$
+
+---
+
+$\mathbb{Z}_n\leq S_n$, (use the set of rotations) so $A=\{1,2,\cdots,n\}$ $\phi(i)=\rho^i$ where $i\in \mathbb{Z}_n$ and $\rho\in D_n$
+
+---
+
+$GL(2,\mathbb{R})$. Set $A=\mathbb{R}^2$, for every $A\in GL(2,\mathbb{R})$, let $\phi(A)$ be the permutation of $\mathbb{R}^2$ induced by $A$, so $\phi(A)=f_A:\mathbb{R}^2\to \mathbb{R}^2$, $f_A(\begin{pmatrix}x\\y\end{pmatrix})=A\begin{pmatrix}x\\y\end{pmatrix}$
+
+We want to show that this is a group homomorphism.
+
+- $\phi(AB)=\phi(A)\phi(B)$ (it is a homomorphism)
+
+$$
+\begin{aligned}
+ f_{AB}(\begin{pmatrix}x\\y\end{pmatrix})&=AB\begin{pmatrix}x\\y\end{pmatrix}\\
+ &=f_A(B\begin{pmatrix}x\\y\end{pmatrix})\\
+ &=f_A(f_B(\begin{pmatrix}x\\y\end{pmatrix}))\\
+ &=(f_A\circ f_B)(\begin{pmatrix}x\\y\end{pmatrix})\\
+\end{aligned}
+$$
+
+- Then we need to show that $\phi$ is one-to-one.
+
+It is sufficient to show that $\operatorname{ker}(\phi)=\{e\}$.
+
+Solve $f_A(\begin{pmatrix}x\\y\end{pmatrix})=\begin{pmatrix}x\\y\end{pmatrix}$, the only choice for $A$ is the identity matrix.
+
+Therefore $\operatorname{ker}(\phi)=\{e\}$.
+
+
+
+
+Proof for Cayley's Theorem
+
+Let $A=G$, for every $g\in G$, define $\lambda_g:G\to G$ by $\lambda_g(x)=gx$.
+
+Then $\lambda_g$ is a **permutation** of $G$. (not homomorphism)
+
+- $\lambda_g$ is one-to-one by cancellation on the left.
+- $\lambda_g$ is onto since $\lambda_g(g^{-1}y)=y$ for every $y\in G$.
+
+We claim $\phi: G\to S_G$ define by $\phi(g)=\lambda_g$ is a group homomorphism that is one-to-one.
+
+First we show that $\phi$ is homomorphism.
+
+$\forall x\in G$
+
+$$
+\begin{aligned}
+ \phi(g_1)\phi(g_2)&=\lambda_{g_1}(\lambda_{g_2}(x))\\
+ &=\lambda_{g_1g_2}(x)\\
+ &=\phi(g_1g_2)x\\
+\end{aligned}
+$$
+
+This is one to one since if $\phi(g_1)=\phi(g_2)$, then $\lambda_{g_1}=\lambda_{g_2}\forall x$, therefore $g_1=g_2$.
+
+
+
+### Odd and even permutations
+
+#### Definition of transposition
+
+A $\sigma\in S_n$ is a transposition is a two cycle $\sigma=(i j)$
+
+Fact: Every permutation in $S_n$ can be written as a product of transpositions. (may not be disjoint transpositions)
+
+
+Example of a product of transpositions
+
+Consider $(1234)=(14)(13)(12)$.
+
+In general, $(i_1,i_2,\cdots,i_m)=(i_1i_m)(i_2i_{m-1})(i_3i_{m-2})\cdots(i_1i_2)$
+
+This is not the unique way.
+
+$$
+(12)(34)=(42)(34)(23)(12)
+$$
+
+
+
+But the parity of the number of transpositions is unique.
+
+#### Theorem for parity of transpositions
+
+If $\sigma\in S_n$ is written as a product of transposition, then the number of transpositions is either always odd or even.
+
+#### Definition of odd and even permutations
+
+$\sigma$ is an even permutation if the number of transpositions is even.
+
+$\sigma$ is an odd permutation if the number of transpositions is odd.
\ No newline at end of file
diff --git a/content/Math4302/_meta.js b/content/Math4302/_meta.js
index a02dddb..083e8f1 100644
--- a/content/Math4302/_meta.js
+++ b/content/Math4302/_meta.js
@@ -11,4 +11,6 @@ export default {
Math4302_L6: "Modern Algebra (Lecture 6)",
Math4302_L7: "Modern Algebra (Lecture 7)",
Math4302_L8: "Modern Algebra (Lecture 8)",
+ Math4302_L9: "Modern Algebra (Lecture 9)",
+ Math4302_L10: "Modern Algebra (Lecture 10)",
}