diff --git a/pages/Math416/Math416_L9.md b/pages/Math416/Math416_L9.md new file mode 100644 index 0000000..0255398 --- /dev/null +++ b/pages/Math416/Math416_L9.md @@ -0,0 +1,149 @@ +# Math416 Lecture 9 + +## Review + +### Power Series + +Let $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ be a power series. + +#### Radius of Convergence + +The radius of convergence of a power series is + +$$ +R=\frac{1}{\limsup_{n\to\infty}|a_n|^{1/n}}. +$$ + +## New Material on Power Series + +### Derivative of Power Series + +Let $f(\zeta)=\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$ be a power series. + +Let $g(\zeta)=\sum_{n=0}^{\infty}na_n(\zeta-\zeta_0)^{n-1}$ be another power series. + +Then $g$ is holomorphic on $D(\zeta_0,R)$ and $g'(\zeta)=f(\zeta)$ for all $\zeta\in D(\zeta_0,R)$. and $f'(\zeta)=g(\zeta)$. + +Proof: + +Note radius of convergence of $g$ is also $R$. + +$\limsup_{n\to\infty}|na_n|^{1/(n-1)}=\limsup_{n\to\infty}|a_n|^{1/n}$. + +Let $\zeta\in D(\zeta_0,R)$. + +let $|\zeta-\zeta_0|<\rho0$ such that on $D(\zeta,\epsilon)\subset U$, $h$ can be represented as a power series $\sum_{n=0}^{\infty}a_n(\zeta-\zeta_0)^n$. + +#### Theorem (Analytic implies holomorphic) + +If $f$ is analytic on $U$, then $f$ is holomorphic on $U$. + +$\sum_{n=0}^{\infty}\frac{1}{n!}f^{(n)}(\zeta)^n$ + +Radius of convergence is $\infty$. + +So $f(0)=1=ce^0=c$ + +$\sum_{n=0}^{\infty}\frac{1}{n}\zeta^n$ + +Radius of convergence is $1$. + +$f'=\sum_{n=1}^{\infty}\zeta^{n-1}=\frac{1}{1-\zeta}$ (Geometric series) + +So $g(\zeta)=c+\log(\frac{1}{1-\zeta})=c+2\pi k i=\log(\frac{1}{1-\zeta})+2\pi k i$ + +#### Cauchy Product of power series + +Let $f(\zeta)=\sum_{n=0}^{\infty}a_n\zeta^n$ and $g(\zeta)=\sum_{n=0}^{\infty}b_n\zeta^n$ be two power series. + +Then $f(\zeta)g(\zeta)=\sum_{n=0}^{\infty}=\sum_{n=0}^{\infty}c_n\zeta^n=\sum_{n=0}^{\infty}\sum_{k=0}^{n}a_kb_{n-k}\zeta^n$ + +#### Theorem of radius of convergence of Cauchy product + +Let $f(\zeta)=\sum_{n=0}^{\infty}a_n\zeta^n$ and $g(\zeta)=\sum_{n=0}^{\infty}b_n\zeta^n$ be two power series. + +Then the radius of convergence of $f(\zeta)g(\zeta)$ is at least $\min(R_f,R_g)$. + +Without loss of generality, assume $\zeta_0=0$. + +$$ +\begin{aligned} +\left(\sum_{j=0}^{N}a_j\zeta^j\right)\left(\sum_{k=0}^{N}b_k\zeta^k\right)-\sum_{l=0}^{N}c_l\zeta^l&=\sum_{j=0}^{N}\sum_{k=N-j}^{N}a_jb_k\zeta^{j+k}\\ +&\leq\sum_{N/2\leq\max(j,k)\leq N}|a_j||b_k||\zeta^{j+k}|\\ +&\leq\left(\sum_{j=N/2}^{N}|a_j||\zeta^j|\right)\left(\sum_{k=0}^{\infty}|b_k||\zeta^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||\zeta^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||\zeta^k|\right)\\ +\end{aligned} +$$ + +Since $\sum_{j=0}^{\infty}|a_j||\zeta^j|$ and $\sum_{k=0}^{\infty}|b_k||\zeta^k|$ are convergent, and $\sum_{j=N/2}^{N}|a_j||\zeta^j|$ and $\sum_{k=N/2}^{\infty}|b_k||\zeta^k|$ converges to zero. + +So $\left|\left(\sum_{j=0}^{N}a_j\zeta^j\right)\left(\sum_{k=0}^{N}b_k\zeta^k\right)-\sum_{l=0}^{N}c_l\zeta^l\right|\leq\left(\sum_{j=N/2}^{N}|a_j||\zeta^j|\right)\left(\sum_{k=0}^{\infty}|b_k||\zeta^k|\right)+\left(\sum_{j=0}^{\infty}|a_j||\zeta^j|\right)\left(\sum_{k=N/2}^{\infty}|b_k||\zeta^k|\right)\to 0$ as $N\to\infty$. + +So $\sum_{n=0}^{\infty}c_n\zeta^n$ converges to $f(\zeta)g(\zeta)$ on $D(0,R_fR_g)$. diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index bf54eb0..3c7ffbb 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -11,4 +11,5 @@ export default { Math416_L6: "Complex Variables (Lecture 6)", Math416_L7: "Complex Variables (Lecture 7)", Math416_L8: "Complex Variables (Lecture 8)", + Math416_L9: "Complex Variables (Lecture 9)" }