diff --git a/Jenkinsfile b/Jenkinsfile index a100a6e..aabbacf 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -1,6 +1,6 @@ pipeline { environment { - registry = "trance0/NoteNextra" + registry = "trance0/notenextra" version = "1.0" } diff --git a/docker-compose.yaml b/docker-compose.yaml index 48da0c6..36e1fcf 100644 --- a/docker-compose.yaml +++ b/docker-compose.yaml @@ -3,7 +3,7 @@ services: build: context: ./ dockerfile: ./Dockerfile - image: trance0/notenextra:v1.1.5 + image: trance0/notenextra:v1.1.6 restart: on-failure:5 ports: - 13000:3000 diff --git a/pages/CSE332S/_meta.js b/pages/CSE332S/_meta.js index 0f2c06a..a96aa9b 100644 --- a/pages/CSE332S/_meta.js +++ b/pages/CSE332S/_meta.js @@ -16,4 +16,5 @@ export default { CSE332S_L11: "Object-Oriented Programming Lab (Lecture 11)", CSE332S_L12: "Object-Oriented Programming Lab (Lecture 12)", CSE332S_L13: "Object-Oriented Programming Lab (Lecture 13)", + CSE332S_L14: "Object-Oriented Programming Lab (Lecture 14)", } diff --git a/pages/Math4121/Math4121_L21.md b/pages/Math4121/Math4121_L21.md index 9ce48b9..c9e2cdc 100644 --- a/pages/Math4121/Math4121_L21.md +++ b/pages/Math4121/Math4121_L21.md @@ -1 +1,74 @@ -# Lecture 21 \ No newline at end of file +# Math4121 Lecture 21 + +## Rolling from last lecture + +### Convergence of integrals + +#### Arzela-Osgood Theorem + +Let $\{f_n\}$ be a sequence of function, $f(x)=\lim_{n\to\infty}f_n(x)$ for every $x\in [0,1]$, if $f\in \mathscr{R}[0,1]$, and $\exists B>0$ such that $|f_n(x)|\leq B \forall x\in [0,1]$. (uniformly bounded and integrable) + +$$ +\lim_{n\to\infty}\int_0^1 f_n(x) dx = \int_0^1 f(x) dx +$$ + +If we let $\Gamma_{\alpha}$ be the set of intervals where $f_n$ is not continuous, + +$$ +\Gamma_{\alpha} = \{x\in [0,1] : \textup{ for any }m\in \mathbb{N}, \delta > 0, \exists n\geq m, y\in (x-\delta, x+\delta) \text{ s.t. } |f_n(y)-f(y)|>\alpha\} +$$ + +Fact: $\Gamma_{\alpha}$ is closed and nowhere dense. + +Proof: + +Without loss of generality, we can assume $f=0$. Given any $\alpha > 0$, $\exists N$ such that + +$$ +\left|\int_0^1 f_n(x) dx \right| < \alpha +$$ + +for all $n\geq N$. + +Consider the set $\Gamma_{\alpha/2} = \bigcup_{n=1}^{\infty} E_n$, for each $g\in \Gamma_{\alpha/2}$, we still have $\lim_{n\to\infty}f_n(g) = 0$. + +So we define + +$$ +G_i=\{g\in \Gamma_{\alpha/2} :|f_n(g)|<\frac{\alpha}{2} \text{ for all }n\geq i\} +$$ + +So $G_1\subset G_2\subset \cdots$ and $\Gamma_{\alpha/2} = \bigcup_{i=1}^{\infty} G_i$. + +By Osgood Lemma, since $\Gamma_{\alpha/2}$ is closed, $\exists K$ such that $c_e(G_K)>c_e(\Gamma_{\alpha/2})-\frac{\alpha}{4B}$. + +By definition of $c_e$, we cna find open $I_1,\ldots,I_N$ which cover $\Gamma_{\alpha/2}$ and + +$$ +\sum_{i=1}^N \ell(I_i) < c_e(\Gamma_{\alpha/2})+\frac{\alpha}{4B} +$$ + +Let $\mathcal{U}=\bigcup_{i=1}^N I_i$, and $\mathcal{C}=[0,1]\setminus \mathcal{U}$. + +Part 1: Control the integral on $\mathcal{C}$ + +for each $x\in \mathcal{C}$, $x\notin \Gamma_{\alpha/2}$, so $\exists$ and open interval $I(x)$ and an integer $m(x)$ such that $|f_{m(x)}(x)|<\frac{\alpha}{2}$ and $\forall n\geq m(x), y\in I(x)$ + +So $\mathcal{C}\subset \bigcup_{x\in \mathcal{C}} I(x)$, and $\mathcal{C}$ is closed and bounded, $\exists x_1,\ldots,x_J$ such that $\mathcal{C}\subset \bigcup_{j=1}^J I(x_j)$. So if $n\geq \max_{j=1,\ldots,J} m(x_j)$, and $x\in \mathcal{C}$, then $|f_n(x)|<\frac{\alpha}{2}$. + +So $\int_\mathcal{C} |f_n(x)| dx < \frac{\alpha}{2} c_e(\mathcal{C})$. + +Part 2: Control the integral on $\mathcal{U}$ + +If $[x_i,x_{i+1}]\cap G_k\neq \emptyset$, then $\inf_{x\in [x_i,x_{i+1}]} |f_n(x)| < \frac{\alpha}{2}$ for all $n\geq K$. Denote such set as $P_1$. + +Otherwise, we denote such set as $P_2$. + +So $\ell(\mathcal{U})=\ell(P_1)+\ell(P_2)\geq c_e(G_K)+\ell(P_2)$. + +This implies $\ell(P_2)\leq \frac{\alpha}{4B}$. + +Continue on Friday. + +QED + diff --git a/pages/Math4121/_meta.js b/pages/Math4121/_meta.js index 04a934f..c23a2bb 100644 --- a/pages/Math4121/_meta.js +++ b/pages/Math4121/_meta.js @@ -22,15 +22,9 @@ export default { Math4121_L17: "Introduction to Lebesgue Integration (Lecture 17)", Math4121_L18: "Introduction to Lebesgue Integration (Lecture 18)", Math4121_L19: "Introduction to Lebesgue Integration (Lecture 19)", - Math4121_L20: { - display: 'hidden' - }, - Math4121_L21: { - display: 'hidden' - }, - Math4121_L22: { - display: 'hidden' - }, + Math4121_L20: "Introduction to Lebesgue Integration (Lecture 20)", + Math4121_L21: "Introduction to Lebesgue Integration (Lecture 21)", + Math4121_L22: "Introduction to Lebesgue Integration (Lecture 22)", Math4121_L23: { display: 'hidden' },