This commit is contained in:
Trance-0
2025-09-08 20:21:00 -05:00
parent 746fe81d2e
commit 8b94bec334
4 changed files with 111 additions and 4 deletions

View File

@@ -115,7 +115,7 @@ An open set with respect to $\mathcal{T}_{\mathcal{S}}$ is a subset of $X$ such
<details>
<summary>Example (standard topology on $\mathbb{R}$)</summary>
<summary>Example (standard topology on real numbers)</summary>
Let $X=\mathbb{R}$. Take $\mathcal{S}=\{(-\infty, a)|a\in \mathbb{R}\}\cup \{(a,+\infty)|a\in \mathbb{R}\}$.

View File

@@ -1 +1,106 @@
# Math4201 Lecture 5 Bonus
# Math4201 Lecture 5 Bonus
## Comparison of two types of topologies
Let $X=\mathbb{R}^2$ and the two types of topologies are:
The "circular topology":
$$
\mathcal{T}_c=\{B_r(p)\mid p\in \mathbb{R}^2,r>0\}
$$
The "rectangle topology":
$$
\mathcal{T}_r=\{(a,b)\times (c,d)\mid a,b,c,d\in \mathbb{R},a<b,c<d\}
$$
> Are these two topologies the same?
### Comparison of two topologies
#### Definition of finer and coarser
Let $\mathcal{T}$ and $\mathcal{T}'$ be two topologies on $X$. We say $\mathcal{T}$ is finer than $\mathcal{T}'$ if $\mathcal{T}'\subseteq \mathcal{T}$. We say $\mathcal{T}$ is coarser than $\mathcal{T}'$ if $\mathcal{T}\subseteq \mathcal{T}'$. We say $\mathcal{T}$ and $\mathcal{T}'$ are equivalent if $\mathcal{T}=\mathcal{T}'$.
$\mathcal{T}$ is strictly finer than $\mathcal{T}'$ if $\mathcal{T}'\subsetneq \mathcal{T}$. (that is, $\mathcal{T}'$ is finer and not equivalent to $\mathcal{T}$)
$\mathcal{T}$ is strictly coarser than $\mathcal{T}'$ if $\mathcal{T}\subsetneq \mathcal{T}'$. (that is, $\mathcal{T}$ is coarser and not equivalent to $\mathcal{T}'$)
<details>
<summary>Example (discrete topology is finer than the trivial topology)</summary>
Let $X$ be an arbitrary set. The discrete topology is $\mathcal{T}_1 = \mathcal{P}(X)=\{U \subseteq X\}$
The trivial topology is $\mathcal{T}_0 = \{\emptyset, X\}$
Clearly, $\mathcal{T}_1 \subseteq \mathcal{T}_0$.
So the discrete topology is finer than the trivial topology.
</details>
#### Lemma
> [!TIP]
>
> Motivating condition:
>
> We want $U$ be an open set in $\mathcal{T}'$, then $U$ has to be open with respect to $\mathcal{T}$. In other words, $\forall x\in U, \exists$ some $B\in \mathcal{B}$ such that $x\in B\subseteq U$.
Let $\mathcal{T}$ and $\mathcal{T}'$ be topologies on $X$ associated with bases $\mathcal{B}$ and $\mathcal{B}'$. Then
$$
\mathcal{T}\text{ is finer than } \mathcal{T}'\iff \text{ for any } B'\in \mathcal{B}', \exists B\in \mathcal{B} \text{ such that } B'\subseteq B
$$
<details>
<summary>Proof</summary>
$(\Rightarrow)$
Let $B'\in \mathcal{B}'$. If $x\in B'$, then $B'\in \mathcal{T}'$ and $T$ is finer than $T'$, so $B'\in \mathcal{T}$.
Take $T=\mathcal{T}_{\mathcal{B}}$. $\exists B\in \mathcal{B}$ such that $x\in B\subseteq B'$.
$(\Leftarrow)$
Let $U\in \mathcal{T}$. Then $U=\bigcup_{\alpha \in I} B_\alpha'$ for some $\{B_\alpha'\}_{\alpha \in I}\subseteq \mathcal{B}'$.
For any $B_\alpha'$ and any $x\in \mathcal{B}_\alpha'$, $\exists B_\alpha\in \mathcal{B}$ such that $x\in B_\alpha\subseteq B_\alpha'$.
Then $B_\alpha'$ is open set in $\mathcal{T}$.
So $U$ is open in $\mathcal{T}$.
$T$ is finer than $T'$.
</details>
Back to the example:
For every point in open circle, we can find a rectangle that contains it.
For every point in open rectangle, we can find a circle that contains it.
So these two topologies are equivalent.
#### Standard topology in $\mathbb{R}^2$
The standard topology in $\mathbb{R}^2$ is the topology generated by the basis $\mathcal{B}_{st}=\{(a,b)\times (c,d)\mid a,b,c,d\in \mathbb{R},a<b,c<d\}$. This is equivalent to the topology generated by the basis $\mathcal{B}_{disk}=\{(x,y)\in \mathbb{R}^2|d((x,y),(a,b))<r\}$.
<details>
<summary>Example (lower limit topology is strictly finer than the standard topology)</summary>
The lower limit topology is the topology generated by the basis $\mathcal{B}_{ll}=\{[a,b)\mid a,b\in \mathbb{R},a<b\}$.
This is finer than the standard topology.
Since $(a,b)\in \mathcal{B}_{st}$, we have $\forall x\in (a,b), \exists B=[x,b)\in \mathcal{B}_{ll}$ such that $x\in B\subsetneq (a,b)$.
So the lower limit topology is strictly finer than the standard topology.
$[0,1)$ is not open in the standard topology. but it is open in the lower limit topology.
</details>

View File

@@ -7,6 +7,6 @@ export default {
Math4201_L2: "Topology I (Lecture 2)",
Math4201_L3: "Topology I (Lecture 3)",
Math4201_L4: "Topology I (Lecture 4)",
Math4201_L5: "Topology I (Lecture 5) Bounus",
Math4201_L5: "Topology I (Lecture 5) Bonus",
Math4201_L6: "Topology I (Lecture 6)"
}