diff --git a/content/Math401/Extending_thesis/Math401_S3.md b/content/Math401/Extending_thesis/Math401_S3.md
index 2e7f933..cd0ffa1 100644
--- a/content/Math401/Extending_thesis/Math401_S3.md
+++ b/content/Math401/Extending_thesis/Math401_S3.md
@@ -1,2 +1,276 @@
# Math 401, Fall 2025: Thesis notes, S3, Coherent states and POVMs
+> This section should extends on the reading for
+>
+> [Holomorphic methods in analysis and mathematical physics]()
+
+
+## Bargmann space (original)
+
+Also known as Segal-Bargmann space or Bargmann-Fock space.
+
+It is the space of [holomorphic functions](../../Math416/Math416_L3#definition-28-holomorphic-functions) that is square-integrable over the complex plane.
+
+> Section belows use [Remarks on a Hilbert Space of Analytic Functions](https://www.jstor.org/stable/71180) as the reference.
+
+A family of Hilbert spaces, $\mathfrak{F}_n(n=1,2,3,\cdots)$, is defined as follows:
+
+The element of $\mathfrak{F}_n$ are [entire](../../Math416/Math416_L13#definition-711) [analytic functions](../../Math416/Math416_L9#definition-analytic) in complex Euclidean space $\mathbb{C}^n$. $f:\mathbb{C}^n\to \mathbb{C}\in \mathfrak{F}_n$
+
+Let $f,g\in \mathfrak{F}_n$. The inner product is defined by
+
+$$
+\langle f,g\rangle=\int_{\mathbb{C}^n} \overline{f(z)}g(z) d\mu_n(z)
+$$
+
+Let $z_k=x_k+iy_k$ be the complex coordinates of $z\in \mathbb{C}^n$.
+
+The measure $\mu_n$ is the defined by
+
+$$
+d\mu_n(z)=\pi^{-n}\exp(-\sum_{i=1}^n |z_i|^2)\prod_{k=1}^n dx_k dy_k
+$$
+
+
+Example
+
+For $n=2$,
+
+$$
+\mathfrak{F}_2=\text{ space of entire analytic functions on } \mathbb{C}^2\to \mathbb{C}
+$$
+
+$$
+\langle f,g\rangle=\int_{\mathbb{C}^2} \overline{f(z)}g(z) d\mu(z),z=(z_1,z_2)
+$$
+
+$$
+d\mu_2(z)=\frac{1}{\pi^2}\exp(-|z|^2)dx_1 dy_1 dx_2 dy_2
+$$
+
+
+
+so that $f$ belongs to $\mathfrak{F}_n$ if and only if $\langle f,f\rangle<\infty$.
+
+This is absolutely terrible early texts, we will try to formulate it in a more modern way.
+
+> The section belows are from the lecture notes [Holomorphic method in analysis and mathematical physics](https://arxiv.org/pdf/quant-ph/9912054)
+
+## Complex function spaces
+
+### Holomorphic spaces
+
+Let $U$ be a non-empty open set in $\mathbb{C}^d$. Let $\mathcal{H}(U)$ be the space of holomorphic (or analytic) functions on $U$.
+
+Let $f\in \mathcal{H}(U)$, note that by definition of holomorphic on several complex variables, $f$ is continuous and holomorphic in each variable with the other variables fixed.
+
+Let $\alpha$ be a continuous, strictly positive function on $U$.
+
+$$
+\mathcal{H}L^2(U,\alpha)=\left\{F\in \mathcal{H}(U): \int_U |F(z)|^2 \alpha(z) d\mu(z)<\infty\right\},
+$$
+
+where $\mu$ is the Lebesgue measure on $\mathbb{C}^d=\mathbb{R}^{2d}$.
+
+#### Theorem of holomorphic spaces
+
+1. For all $z\in U$, there exists a constant $c_z$ such that
+ $$
+ |F(z)|^2\le c_z \|F\|^2_{L^2(U,\alpha)}
+ $$
+ for all $F\in \mathcal{H}L^2(U,\alpha)$.
+2. $\mathcal{H}L^2(U,\alpha)$ is a closed subspace of $L^2(U,\alpha)$, and therefore a Hilbert space.
+
+
+Proof
+
+First we check part 1.
+
+Let $z=(z_1,z_2,\cdots,z_d)\in U, z_k\in \mathbb{C}$. Let $P_s(z)$ be the "polydisk"of radius $s$ centered at $z$ defined as
+
+$$
+P_s(z)=\{v\in \mathbb{C}^d: |v_k-z_k|1$, we can use the same argument to show that
+
+Let $\mathbb{I}_{P_s(z)}(v)=\begin{cases}1 & v\in P_s(z) \\0 & v\notin P_s(z)\end{cases}$ be the indicator function of $P_s(z)$.
+
+$$
+\begin{aligned}
+F(z)&=(\pi s^2)^{-d}\int_{U}\mathbb{I}_{P_s(z)}(v)\frac{1}{\alpha(v)}F(v)\alpha(v) d\mu(v)\\
+&=(\pi s^2)^{-d}\langle \mathbb{I}_{P_s(z)}\frac{1}{\alpha},F\rangle_{L^2(U,\alpha)}
+\end{aligned}
+$$
+
+By definition of inner product.
+
+So $\|F(z)\|^2\leq (\pi s^2)^{-2d}\|\mathbb{I}_{P_s(z)}\frac{1}{\alpha}\|^2_{L^2(U,\alpha)} \|F\|^2_{L^2(U,\alpha)}$.
+
+All the terms are bounded and finite.
+
+For part 2, we need to show that $\forall z\in U$, we can find a neighborhood $V$ of $z$ and a constant $d_z$ such that
+
+$$
+|F(z)|^2\leq d_z \|F\|^2_{L^2(U,\alpha)}
+$$
+
+Suppose we have a sequence $F_n\in \mathcal{H}L^2(U,\alpha)$ such that $F_n\to F$, $F\in L^2(U,\alpha)$.
+
+Then $F_n$ is a cauchy sequence in $L^2(U,\alpha)$. So,
+
+$$
+\sup_{v\in V}|F_n(v)-F_m(v)|\leq \sqrt{d_z}\|F_n-F_m\|_{L^2(U,\alpha)}\to 0\text{ as }n,m\to \infty
+$$
+
+So the sequence $F_m$ converges locally uniformly to some limit function which must be $F$ ($\mathbb{C}^d$ is Hausdorff, unique limit point).
+
+Locally uniform limit of holomorphic functions is holomorphic. (Use Morera's Theorem to show that the limit is still holomorphic in each variable.) So the limit function $F$ is actually in $\mathcal{H}L^2(U,\alpha)$, which shows that $\mathcal{H}L^2(U,\alpha)$ is closed.
+
+which shows that $\mathcal{H}L^2(U,\alpha)$ is closed.
+
+
+
+> [!TIP]
+>
+> [1.] states that point-wise evaluation of $F$ on $U$ is continuous. That is, for each $z\in U$, the map $\varphi: \mathcal{H}L^2(U,\alpha)\to \mathbb{C}$ that takes $F\in \mathcal{H}L^2(U,\alpha)$ to $F(z)$ is a continuous linear functional on $\mathcal{H}L^2(U,\alpha)$. This is false for ordinary non-holomorphic functions, e.g. $L^2$ spaces.
+
+#### Reproducing kernel
+
+Let $\mathcal{H}L^2(U,\alpha)$ be a holomorphic space. The reproducing kernel of $\mathcal{H}L^2(U,\alpha)$ is a function $K:U\times U\to \mathbb{C}$, $K(z,w),z,w\in U$ with the following properties:
+
+1. $K(z,w)$ is holomorphic in $z$ and anti-holomorphic in $w$.
+ $$
+ K(w,z)=\overline{K(z,w)}
+ $$
+
+2. For each fixed $z\in U$, $K(z,w)$ is a square integrable $d\alpha(w)$. For all $F\in \mathcal{H}L^2(U,\alpha)$,
+ $$
+ F(z)=\int_U K(z,w)F(w) \alpha(w) dw
+ $$
+
+3. If $F\in L^2(U,\alpha)$, let $PF$ denote the orthogonal projection of $F$ onto closed subspace $\mathcal{H}L^2(U,\alpha)$. Then
+ $$
+ PF(z)=\int_U K(z,w)F(w) \alpha(w) dw
+ $$
+
+4. For all $z,u\in U$,
+ $$
+ \int_U K(z,w)K(w,u) \alpha(w) dw=K(z,u)
+ $$
+
+5. For all $z\in U$,
+ $$
+ |F(z)|^2\leq K(z,z) \|F\|^2_{L^2(U,\alpha)}
+ $$
+
+
+Proof
+
+For part 1, By [Riesz Theorem](../../Math429/Math429_L27#theorem-642-riesz-representation-theorem), the linear functional evaluation at $z\in U$ on $\mathcal{H}L^2(U,\alpha)$ can be represented uniquely as inner product with some $\phi_z\in \mathcal{H}L^2(U,\alpha)$.
+
+$$
+F(z)=\langle F,\phi_z\rangle_{L^2(U,\alpha)}=\int_U F(w)\overline{\phi_z(w)} \alpha(w) dw
+$$
+
+And assume part 2 is true, then we have
+
+$K(z,w)=\overline{\phi_z(w)}$
+
+So part 1 is true.
+
+For part 2, we can use the same argument
+
+$$
+\phi_z(w)=\langle \phi_z,\phi_w\rangle_{L^2(U,\alpha)}=\overline{\langle \phi_w,\phi_z\rangle_{L^2(U,\alpha)}}=\overline{\phi_w(z)}
+$$
+
+... continue if needed.
+
+
+
+#### Construction of reproducing kernel
+
+Let $\{e_j\}$ be any orthonormal basis of $\mathcal{H}L^2(U,\alpha)$. Then for all $z,w\in U$,
+
+$$
+\sum_{j=1}^{\infty} |e_j(z)\overline{e_j(w)}|<\infty
+$$
+
+and
+
+$$
+K(z,w)=\sum_{j=1}^{\infty} e_j(z)\overline{e_j(w)}
+$$
+
+### Bargmann space
+
+The Bargmann spaces are the holomorphic spaces
+
+$$
+\mathcal{H}L^2(\mathbb{C}^d,\mu_t)
+$$
+
+where
+
+$$
+\mu_t(z)=(\pi t)^{-d}\exp(-|z|^2/t)
+$$
+
+> For this research, we can tentatively set $t=1$ and $d=2$ for simplicity so that you can continue to read the next section.
+
+#### Reproducing kernel for Bargmann space
+
+For all $d\geq 1$, the reproducing kernel of the space $\mathcal{H}L^2(\mathbb{C}^d,\mu_t)$ is given by
+
+$$
+K(z,w)=\exp(z\cdot \overline{w}/t)
+$$
+
+where $z\cdot \overline{w}=\sum_{k=1}^d z_k\overline{w_k}$.
+
+This gives the pointwise bounds
+
+$$
+|F(z)|^2\leq \exp(\|z\|^2/t) \|F\|^2_{L^2(\mathbb{C}^d,\mu_t)}
+$$
+
+For all $F\in \mathcal{H}L^2(\mathbb{C}^d,\mu_t)$, and $z\in \mathbb{C}^d$.
+
+> Proofs are intentionally skipped, you can refer to the lecture notes for details.
+
+#### Lie bracket of vector fields
+
+Let $X,Y$ be two vector fields on a smooth manifold $M$. The Lie bracket of $X$ and $Y$ is an operator $[X,Y]:C^\infty(M)\to C^\infty(M)$ defined by
+
+$$
+[X,Y](f)=X(Y(f))-Y(X(f))
+$$
+
+This operator is a vector field.
+
+> Continue here for quantization of Coherent states and POVMs
\ No newline at end of file
diff --git a/content/Math401/Extending_thesis/Math401_S4.md b/content/Math401/Extending_thesis/Math401_S4.md
index 62c10f8..d7d3acd 100644
--- a/content/Math401/Extending_thesis/Math401_S4.md
+++ b/content/Math401/Extending_thesis/Math401_S4.md
@@ -1,272 +1,4 @@
-# Math 401, Fall 2025: Thesis notes, S4, Complex function spaces and complex manifold
-
-## Bargmann space (original)
-
-Also known as Segal-Bargmann space or Bargmann-Fock space.
-
-It is the space of [holomorphic functions](../../Math416/Math416_L3#definition-28-holomorphic-functions) that is square-integrable over the complex plane.
-
-> Section belows use [Remarks on a Hilbert Space of Analytic Functions](https://www.jstor.org/stable/71180) as the reference.
-
-A family of Hilbert spaces, $\mathfrak{F}_n(n=1,2,3,\cdots)$, is defined as follows:
-
-The element of $\mathfrak{F}_n$ are [entire](../../Math416/Math416_L13#definition-711) [analytic functions](../../Math416/Math416_L9#definition-analytic) in complex Euclidean space $\mathbb{C}^n$. $f:\mathbb{C}^n\to \mathbb{C}\in \mathfrak{F}_n$
-
-Let $f,g\in \mathfrak{F}_n$. The inner product is defined by
-
-$$
-\langle f,g\rangle=\int_{\mathbb{C}^n} \overline{f(z)}g(z) d\mu_n(z)
-$$
-
-Let $z_k=x_k+iy_k$ be the complex coordinates of $z\in \mathbb{C}^n$.
-
-The measure $\mu_n$ is the defined by
-
-$$
-d\mu_n(z)=\pi^{-n}\exp(-\sum_{i=1}^n |z_i|^2)\prod_{k=1}^n dx_k dy_k
-$$
-
-
-Example
-
-For $n=2$,
-
-$$
-\mathfrak{F}_2=\text{ space of entire analytic functions on } \mathbb{C}^2\to \mathbb{C}
-$$
-
-$$
-\langle f,g\rangle=\int_{\mathbb{C}^2} \overline{f(z)}g(z) d\mu(z),z=(z_1,z_2)
-$$
-
-$$
-d\mu_2(z)=\frac{1}{\pi^2}\exp(-|z|^2)dx_1 dy_1 dx_2 dy_2
-$$
-
-
-
-so that $f$ belongs to $\mathfrak{F}_n$ if and only if $\langle f,f\rangle<\infty$.
-
-This is absolutely terrible early texts, we will try to formulate it in a more modern way.
-
-> The section belows are from the lecture notes [Holomorphic method in analysis and mathematical physics](https://arxiv.org/pdf/quant-ph/9912054)
-
-## Complex function spaces
-
-### Holomorphic spaces
-
-Let $U$ be a non-empty open set in $\mathbb{C}^d$. Let $\mathcal{H}(U)$ be the space of holomorphic (or analytic) functions on $U$.
-
-Let $f\in \mathcal{H}(U)$, note that by definition of holomorphic on several complex variables, $f$ is continuous and holomorphic in each variable with the other variables fixed.
-
-Let $\alpha$ be a continuous, strictly positive function on $U$.
-
-$$
-\mathcal{H}L^2(U,\alpha)=\left\{F\in \mathcal{H}(U): \int_U |F(z)|^2 \alpha(z) d\mu(z)<\infty\right\},
-$$
-
-where $\mu$ is the Lebesgue measure on $\mathbb{C}^d=\mathbb{R}^{2d}$.
-
-#### Theorem of holomorphic spaces
-
-1. For all $z\in U$, there exists a constant $c_z$ such that
- $$
- |F(z)|^2\le c_z \|F\|^2_{L^2(U,\alpha)}
- $$
- for all $F\in \mathcal{H}L^2(U,\alpha)$.
-2. $\mathcal{H}L^2(U,\alpha)$ is a closed subspace of $L^2(U,\alpha)$, and therefore a Hilbert space.
-
-
-Proof
-
-First we check part 1.
-
-Let $z=(z_1,z_2,\cdots,z_d)\in U, z_k\in \mathbb{C}$. Let $P_s(z)$ be the "polydisk"of radius $s$ centered at $z$ defined as
-
-$$
-P_s(z)=\{v\in \mathbb{C}^d: |v_k-z_k|1$, we can use the same argument to show that
-
-Let $\mathbb{I}_{P_s(z)}(v)=\begin{cases}1 & v\in P_s(z) \\0 & v\notin P_s(z)\end{cases}$ be the indicator function of $P_s(z)$.
-
-$$
-\begin{aligned}
-F(z)&=(\pi s^2)^{-d}\int_{U}\mathbb{I}_{P_s(z)}(v)\frac{1}{\alpha(v)}F(v)\alpha(v) d\mu(v)\\
-&=(\pi s^2)^{-d}\langle \mathbb{I}_{P_s(z)}\frac{1}{\alpha},F\rangle_{L^2(U,\alpha)}
-\end{aligned}
-$$
-
-By definition of inner product.
-
-So $\|F(z)\|^2\leq (\pi s^2)^{-2d}\|\mathbb{I}_{P_s(z)}\frac{1}{\alpha}\|^2_{L^2(U,\alpha)} \|F\|^2_{L^2(U,\alpha)}$.
-
-All the terms are bounded and finite.
-
-For part 2, we need to show that $\forall z\in U$, we can find a neighborhood $V$ of $z$ and a constant $d_z$ such that
-
-$$
-|F(z)|^2\leq d_z \|F\|^2_{L^2(U,\alpha)}
-$$
-
-Suppose we have a sequence $F_n\in \mathcal{H}L^2(U,\alpha)$ such that $F_n\to F$, $F\in L^2(U,\alpha)$.
-
-Then $F_n$ is a cauchy sequence in $L^2(U,\alpha)$. So,
-
-$$
-\sup_{v\in V}|F_n(v)-F_m(v)|\leq \sqrt{d_z}\|F_n-F_m\|_{L^2(U,\alpha)}\to 0\text{ as }n,m\to \infty
-$$
-
-So the sequence $F_m$ converges locally uniformly to some limit function which must be $F$ ($\mathbb{C}^d$ is Hausdorff, unique limit point).
-
-Locally uniform limit of holomorphic functions is holomorphic. (Use Morera's Theorem to show that the limit is still holomorphic in each variable.) So the limit function $F$ is actually in $\mathcal{H}L^2(U,\alpha)$, which shows that $\mathcal{H}L^2(U,\alpha)$ is closed.
-
-which shows that $\mathcal{H}L^2(U,\alpha)$ is closed.
-
-
-
-> [!TIP]
->
-> [1.] states that point-wise evaluation of $F$ on $U$ is continuous. That is, for each $z\in U$, the map $\varphi: \mathcal{H}L^2(U,\alpha)\to \mathbb{C}$ that takes $F\in \mathcal{H}L^2(U,\alpha)$ to $F(z)$ is a continuous linear functional on $\mathcal{H}L^2(U,\alpha)$. This is false for ordinary non-holomorphic functions, e.g. $L^2$ spaces.
-
-#### Reproducing kernel
-
-Let $\mathcal{H}L^2(U,\alpha)$ be a holomorphic space. The reproducing kernel of $\mathcal{H}L^2(U,\alpha)$ is a function $K:U\times U\to \mathbb{C}$, $K(z,w),z,w\in U$ with the following properties:
-
-1. $K(z,w)$ is holomorphic in $z$ and anti-holomorphic in $w$.
- $$
- K(w,z)=\overline{K(z,w)}
- $$
-
-2. For each fixed $z\in U$, $K(z,w)$ is a square integrable $d\alpha(w)$. For all $F\in \mathcal{H}L^2(U,\alpha)$,
- $$
- F(z)=\int_U K(z,w)F(w) \alpha(w) dw
- $$
-
-3. If $F\in L^2(U,\alpha)$, let $PF$ denote the orthogonal projection of $F$ onto closed subspace $\mathcal{H}L^2(U,\alpha)$. Then
- $$
- PF(z)=\int_U K(z,w)F(w) \alpha(w) dw
- $$
-
-4. For all $z,u\in U$,
- $$
- \int_U K(z,w)K(w,u) \alpha(w) dw=K(z,u)
- $$
-
-5. For all $z\in U$,
- $$
- |F(z)|^2\leq K(z,z) \|F\|^2_{L^2(U,\alpha)}
- $$
-
-
-Proof
-
-For part 1, By [Riesz Theorem](../../Math429/Math429_L27#theorem-642-riesz-representation-theorem), the linear functional evaluation at $z\in U$ on $\mathcal{H}L^2(U,\alpha)$ can be represented uniquely as inner product with some $\phi_z\in \mathcal{H}L^2(U,\alpha)$.
-
-$$
-F(z)=\langle F,\phi_z\rangle_{L^2(U,\alpha)}=\int_U F(w)\overline{\phi_z(w)} \alpha(w) dw
-$$
-
-And assume part 2 is true, then we have
-
-$K(z,w)=\overline{\phi_z(w)}$
-
-So part 1 is true.
-
-For part 2, we can use the same argument
-
-$$
-\phi_z(w)=\langle \phi_z,\phi_w\rangle_{L^2(U,\alpha)}=\overline{\langle \phi_w,\phi_z\rangle_{L^2(U,\alpha)}}=\overline{\phi_w(z)}
-$$
-
-... continue if needed.
-
-
-
-#### Construction of reproducing kernel
-
-Let $\{e_j\}$ be any orthonormal basis of $\mathcal{H}L^2(U,\alpha)$. Then for all $z,w\in U$,
-
-$$
-\sum_{j=1}^{\infty} |e_j(z)\overline{e_j(w)}|<\infty
-$$
-
-and
-
-$$
-K(z,w)=\sum_{j=1}^{\infty} e_j(z)\overline{e_j(w)}
-$$
-
-### Bargmann space
-
-The Bargmann spaces are the holomorphic spaces
-
-$$
-\mathcal{H}L^2(\mathbb{C}^d,\mu_t)
-$$
-
-where
-
-$$
-\mu_t(z)=(\pi t)^{-d}\exp(-|z|^2/t)
-$$
-
-> For this research, we can tentatively set $t=1$ and $d=2$ for simplicity so that you can continue to read the next section.
-
-#### Reproducing kernel for Bargmann space
-
-For all $d\geq 1$, the reproducing kernel of the space $\mathcal{H}L^2(\mathbb{C}^d,\mu_t)$ is given by
-
-$$
-K(z,w)=\exp(z\cdot \overline{w}/t)
-$$
-
-where $z\cdot \overline{w}=\sum_{k=1}^d z_k\overline{w_k}$.
-
-This gives the pointwise bounds
-
-$$
-|F(z)|^2\leq \exp(\|z\|^2/t) \|F\|^2_{L^2(\mathbb{C}^d,\mu_t)}
-$$
-
-For all $F\in \mathcal{H}L^2(\mathbb{C}^d,\mu_t)$, and $z\in \mathbb{C}^d$.
-
-> Proofs are intentionally skipped, you can refer to the lecture notes for details.
-
-#### Lie bracket of vector fields
-
-Let $X,Y$ be two vector fields on a smooth manifold $M$. The Lie bracket of $X$ and $Y$ is an operator $[X,Y]:C^\infty(M)\to C^\infty(M)$ defined by
-
-$$
-[X,Y](f)=X(Y(f))-Y(X(f))
-$$
-
-This operator is a vector field.
+# Math 401, Fall 2025: Thesis notes, S4, Complex manifolds
## Complex Manifolds
@@ -312,6 +44,40 @@ A **holomorphic line bundle** is a holomorphic vector bundle with rank 1.
> Intuitively, a holomorphic line bundle is a complex vector bundle with a complex structure on each fiber.
+### Simplicial, Sheafs, Cohomology and homology
+
+What is homology and cohomology?
+
+> This section is based on extension for conversation with Professor Feres on [11/05/2025].
+
+#### Definition of meromorphic function
+
+Let $Y$ be an open subset of $X$. A function $f$ is called meromorphic function on $Y$, if there exists a non-empty open subset $Y'\subset Y$ such that
+
+1. $f:Y'\to \mathbb{C}$ is a holomorphic function.
+2. $A=Y\setminus Y'$ is a set of isolated points (called the set of poles)
+3. $\lim_{x\to p}|f(x)|=+\infty$ for all $p\in A$
+
+> Basically, a local holomorphic function on $Y$.
+
+#### De Rham Theorem
+
+This is analogous to the Stoke's Theorem on chains, $\int_c d\omega=\int_{\partial c} \omega$.
+
+$$
+H_k(X)\cong H^k(X)
+$$
+
+Where $H_k(X)$ is the $k$-th homology of $X$, and $H^k(X)$ is the $k$-th cohomology of $X$.
+
+#### Simplicial Cohomology
+
+Riemann surfaces admit triangulations. The triangle are 2 simplices. The edges are 1 simplices. the vertices are 0 simplices.
+
+Our goal is to build global description of Riemann surfaces using local description on each triangulation.
+
+#### Singular Cohomology
+
### Riemann-Roch Theorem (Theorem 9.64)
Suppose $M$ is a connected compact Riemann surface of genus $g$, and $L\to M$ is a holomorphic line bundle. Then
diff --git a/content/Math401/Extending_thesis/_meta.js b/content/Math401/Extending_thesis/_meta.js
index 2996d95..037fab7 100644
--- a/content/Math401/Extending_thesis/_meta.js
+++ b/content/Math401/Extending_thesis/_meta.js
@@ -1,3 +1,4 @@
export default {
index: "Math 401, Fall 2025: Overview of thesis",
+
}
\ No newline at end of file