diff --git a/pages/Math416/Math416_L23.md b/pages/Math416/Math416_L23.md new file mode 100644 index 0000000..f5ed5e6 --- /dev/null +++ b/pages/Math416/Math416_L23.md @@ -0,0 +1,89 @@ +# Math416 Lecture 23 + +## Chapter 9: Generalized Cauchy Theorem + +### Separation lemma + +Let $\Omega$ be an open subset in $\mathbb{C}$, let $K\subset \Omega$ be compact. Then There exists a simple contour $\Gamma$ such that + +$$ +K\subset \text{int}(\Gamma)\subset \Omega +$$ + +#### Corollary 9.9 for separation lemma + +Let $\Gamma$ be the contour constructed in the separation lemma. Let $f\in O(\Omega)$ be holomorphic on $\Omega$. Then $\forall z_0\in K$ such that + +$$ +f(z_0)=\frac{1}{2\pi i}\int_{\Gamma}\frac{f(z)}{z-z_0}dz +$$ + +Proof: + +Suppose $h\in O(G)$, then $\int_{\partial S} h(z)dz=0$, by Cauchy's theorem for square, followed from the triangle case. + +So $\int_{\Gamma} h(z)dz=0=\sum_{j=1}^n \int_{\partial S_j} h(z)dz$ + +Fix $z_0\in K$, + +$$ +g(z_0)=\begin{cases} +\frac{f(z)-f(z_0)}{z-z_0} & z\neq z_0 \\ +f'(z_0) & z=z_0 +\end{cases} +$$ + +So $\int_{\Gamma} g(z)dz=0$ + +Thus + +$$ +\begin{aligned} +\int_{\Gamma}\frac{f(z)}{z-z_0}dz-\int_{\Gamma}\frac{f(z_0)}{z-z_0}dz&=0 \\ +\int_{\Gamma}\frac{f(z)}{z-z_0}dz&=f(z_0)\int_{\Gamma}\frac{1}{z-z_0}dz \\ +&=f(z_0)\cdot 2\pi i +\end{aligned} +$$ + +QED + +#### Theorem 9.10 Cauchy's Theorem + +Let $\Omega$ be an open subset in $\mathbb{C}$, let $\Gamma$ be a contour with $int(\Gamma)\subset \Omega$. Let $f\in O(\Omega)$ be holomorphic on $\Omega$. Then + +$$ +\int_{\Gamma} f(z)dz=0 +$$ + +Proof: + +Let $K\subset \mathbb{C}\setminus \text{ext}(\Gamma)$. + +By separation lemma, $\exists \Gamma_1$ s.t. $K\subset \text{int}(\Gamma_1)\subset \Omega$. + +Notice that Separation lemma ensured that $w\neq z$ for all $w\in \Gamma_1, z\in \Gamma$. + +By Corollary 9.9, $\forall z\in K, f(z)=\frac{1}{2\pi i}\int_{\Gamma_1}\frac{f(w)}{w-z}dw$ + +$$ +\int_{\Gamma} f(z)dz=\frac{1}{2\pi i}\int_{\Gamma}\left[\int_{\Gamma_1}\frac{f(w)}{w-z}dw\right]dz +$$ + +By Fubini's theorem (In graduate course for analysis), + +$$ +\begin{aligned} +\int_{\Gamma} f(z)dz&=\frac{1}{2\pi i}\int_{\Gamma_1}\left[\int_{\Gamma}\frac{f(w)}{w-z}dz\right]dw \\ +&=\frac{1}{2\pi i}\int_{\Gamma_1}f(w)\left[\int_{\Gamma}\frac{1}{w-z}dz\right]dw \\ +&=\frac{1}{2\pi i}\int_{\Gamma_1}f(w)\cdot 2\pi i \ \text{ind}_{\Gamma}(w)dw \\ +&=0 +\end{aligned} +$$ + +Since the winding number for $\Gamma$ on $w\in \Gamma_1$ is 0. ($w$ is outside of $\Gamma$) + +QED + +### Homotopy + + diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index dfff81c..9997e64 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -26,4 +26,5 @@ export default { Math416_L20: "Complex Variables (Lecture 20)", Math416_L21: "Complex Variables (Lecture 21)", Math416_L22: "Complex Variables (Lecture 22)", + Math416_L23: "Complex Variables (Lecture 23)", }