From 8f2e613b36406bf7d1b330896968693f6e6c980b Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 3 Feb 2026 14:59:32 -0600 Subject: [PATCH] fix errors and update news --- content/CSE4303/CSE4303_L6.md | 5 +++ content/CSE4303/CSE4303_L7.md | 65 ++++++++++++++++++++++++++++++++ content/CSE4303/_meta.js | 2 + content/Math4201/Math4201_L34.md | 2 +- content/Math4201/Math4201_L4.md | 2 +- 5 files changed, 74 insertions(+), 2 deletions(-) create mode 100644 content/CSE4303/CSE4303_L6.md create mode 100644 content/CSE4303/CSE4303_L7.md diff --git a/content/CSE4303/CSE4303_L6.md b/content/CSE4303/CSE4303_L6.md new file mode 100644 index 0000000..941913e --- /dev/null +++ b/content/CSE4303/CSE4303_L6.md @@ -0,0 +1,5 @@ +# CSE4303 Introduction to Computer Security (Lecture 6) + +Refer to this lecture notes + +[CSE442T Lecture 3](https://notenextra.trance-0.com/CSE442T/CSE442T_L3/) diff --git a/content/CSE4303/CSE4303_L7.md b/content/CSE4303/CSE4303_L7.md new file mode 100644 index 0000000..a317587 --- /dev/null +++ b/content/CSE4303/CSE4303_L7.md @@ -0,0 +1,65 @@ +# CSE4303 Introduction to Computer Security (Lecture 7) + +## Cyptography in Symmetric Systems + +### Symmetric systems + +Symmetric (shared-key) encryption + +- Classical techniques +- Computer-aided techniques +- Formal reasoning +- Realizations: + - Stream ciphers + - Block ciphers + +#### Stream ciphers + +1. Operate on PT one bit at a time (usually), as a bit "stream" +2. Generate arbitrarily long keystream on demand + +Security abstraction: + +1. XOR transfers randomness of keystream to randomness of CT regardless of PT’s content +2. Security depends on G being “practically” indistinguishable from random string and “practically” unpredictable +3. Idea: shouldn’t be able to predict next bit of generator given all bits seen so far + +Keystream $G(k)$ + +- Idea: shouldn’t be able to predict next bit of generator given all bits seen so far +- Strategies and challenges: many! +- Idea that doesn’t quite work: Linear Feedback Shift Register (LFSR) + - Choice of feedback: by algebra + - Pro: fast, statistically close to random + - Problem: susceptible to cryptanalysis (b/c linear) + - LFSR-based +- Modifications to basic LFSR: + - Use non-linear combo of multiple LFSRs + - Use controlled clocking (e.g. only cycle the LFSR when another LFSR outputs a 1) + - Etc. +- Others: mod arithmetic-based, other algebraic constructions + +#### Block ciphers + +1. Operate on PT one block at a time +2. Use same key for multiple blocks (with caveats) +3. Chaining modes intertwine successive blocks of CT (or not) + +View cipher as a Pseudo-Random Permutation (PRP) + +- PRP defined over $(K, X)$: + +$$ +E: K \times X \to X +$$ + +such that: + +1. There exists an “efficient” deterministic algorithm to evaluate $E(k,x)$. +2. The function $E( k, \cdot )$ is one-to-one. +3. There exists an “efficient” inversion algorithm $D(k,y)$. + +- i.e. a PRF that is an invertible 1-to-1 mapping from message space to +message space + + diff --git a/content/CSE4303/_meta.js b/content/CSE4303/_meta.js index 3ec53ca..4596509 100644 --- a/content/CSE4303/_meta.js +++ b/content/CSE4303/_meta.js @@ -8,4 +8,6 @@ export default { CSE4303_L3: "Introduction to Computer Security (Lecture 3)", CSE4303_L4: "Introduction to Computer Security (Lecture 4)", CSE4303_L5: "Introduction to Computer Security (Lecture 5)", + CSE4303_L6: "Introduction to Computer Security (Lecture 6)", + CSE4303_L7: "Introduction to Computer Security (Lecture 7)", } diff --git a/content/Math4201/Math4201_L34.md b/content/Math4201/Math4201_L34.md index df4463d..3e57af2 100644 --- a/content/Math4201/Math4201_L34.md +++ b/content/Math4201/Math4201_L34.md @@ -21,7 +21,7 @@ If $\mathbb{R}_l$ is second countable, then for any real number $x$, there is an Any such open sets is of the form $[x,x+\epsilon)\cap A$ with $\epsilon>0$ and any element of $A$ being larger than $\min(U_x)=x$. -In summary, for any $x\in \mathbb{R}$, there is an element $U_x\in \mathcal{B}$ with $(U_x)=x$. In particular, if $x\neq y$, then $U_x\neq U_y$. SO there is an injective map $f:\mathbb{R}\rightarrow \mathcal{B}$ sending $x$ to $U_x$. This implies that $\mathbb{B}$ is uncountable. +In summary, for any $x\in \mathbb{R}$, there is an element $U_x\in \mathcal{B}$ with $(U_x)=x$. In particular, if $x\neq y$, then $U_x\neq U_y$. So there is an injective map $f:\mathbb{R}\rightarrow \mathcal{B}$ sending $x$ to $U_x$. This implies that $\mathcal{B}$ is uncountable. diff --git a/content/Math4201/Math4201_L4.md b/content/Math4201/Math4201_L4.md index fdc1dac..428e9bc 100644 --- a/content/Math4201/Math4201_L4.md +++ b/content/Math4201/Math4201_L4.md @@ -27,7 +27,7 @@ $$ Let $(X,\mathcal{T})$ be a topological space. Let $\mathcal{C}\subseteq \mathcal{T}$ be a collection of subsets of $X$ satisfying the following property: $$ -\forall U\in \mathcal{T}, \exists C\in \mathcal{C} \text{ such that } U\subseteq C +\forall U\in \mathcal{T}, \exists C\in \mathcal{C} \text{ such that } C\subseteq U $$ Then $\mathcal{C}$ is a basis and the topology generated by $\mathcal{C}$ is $\mathcal{T}$.