diff --git a/docker-compose.yaml b/docker-compose.yaml index c517a7c..8e1975c 100644 --- a/docker-compose.yaml +++ b/docker-compose.yaml @@ -3,7 +3,7 @@ services: build: context: ./ dockerfile: ./Dockerfile - image: trance0/notenextra:v1.1.9 + image: trance0/notenextra:v1.1.10 restart: on-failure:5 ports: - 13000:3000 diff --git a/pages/Math4121/_meta.js b/pages/Math4121/_meta.js index 9e904fa..ca400c6 100644 --- a/pages/Math4121/_meta.js +++ b/pages/Math4121/_meta.js @@ -27,15 +27,9 @@ export default { Math4121_L22: "Introduction to Lebesgue Integration (Lecture 22)", Math4121_L23: "Introduction to Lebesgue Integration (Lecture 23)", Math4121_L24: "Introduction to Lebesgue Integration (Lecture 24)", - Math4121_L25: { - display: 'hidden' - }, - Math4121_L26: { - display: 'hidden' - }, - Math4121_L27: { - display: 'hidden' - }, + Math4121_L25: "Introduction to Lebesgue Integration (Lecture 25)", + Math4121_L26: "Introduction to Lebesgue Integration (Lecture 26)", + Math4121_L27: "Introduction to Lebesgue Integration (Lecture 27)", Math4121_L28: { display: 'hidden' }, diff --git a/pages/Math416/Math416_L18.md b/pages/Math416/Math416_L18.md new file mode 100644 index 0000000..712c656 --- /dev/null +++ b/pages/Math416/Math416_L18.md @@ -0,0 +1,188 @@ +# Math416 Lecture 18 + +## Chapter 8: Laurent Series and Isolated Singularities + +### 8.1 Laurent Series + +#### Definition of Laurent Series + +$$ +\sum_{n=-\infty}^{\infty} c_n (z-z_0)^n +$$ + +where $c_n$ are complex coefficients. + +Let $R_2=\frac{1}{\limsup_{n\to\infty} |c_n|^{1/n}}$, then the Laurent series converges on $|z-z_0|R_1$, the Laurent series diverges. + +If $R_1\leq R_2$, then the Laurent series converges on $A(z_0;R_1,R_2)=\{z:R_1<|z-z_0| $$ +\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} + 2\pi i, & n=-1 \\ + 0, & n\neq -1 +\end{cases}$$ +> Proof: +> $\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$ +> $$\begin{aligned} +\int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\ +&= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\ +&= \begin{cases} + 2\pi i, & n=-1 \\ + \int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1 +\end{cases} +\end{aligned}$$ + +So, + +$$ +\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz=c_{-1}2\pi i +$$ + +And, + +$$ +\int_{C(z_0,r)} f(z)(z-z_0)^k dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^{n+k} dz = c_{-1-k}2\pi i +$$ + +So, + +$$ +2\pi i c_j = \int_{C(z_0,r)} f(z)(z-z_0)^{-j-1} dz +$$ + +### Cauchy integral + +Recall Cauchy integral formula: + +$$ +f(z) = \int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi +$$ + +where $\gamma$ is a closed curve. + +Suppose $|z-z_0|>R$, + +$$ +\begin{aligned} +\frac{1}{\xi-z}&=\frac{1}{\xi-z_0-(z-z_0)}\\ +&=-\frac{1}{z-z_0}\frac{1}{1-\frac{\xi-z_0}{z-z_0}}\\ +&=-\frac{1}{z-z_0}\sum_{n=0}^{\infty} \frac{(\xi-z_0)^n}{(z-z_0)^n}\\ +&=-\sum_{m=1}^{\infty} (\xi-z_0)^{m-1}(z-z_0)^{-m} +\end{aligned} +$$ + +So, + +$$ +\begin{aligned} +f(z) &= \int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi\\ +&= -\int_{\gamma} \sum_{m=1}^{\infty} (\xi-z_0)^{m-1}(z-z_0)^{-m}\phi(\xi) d\xi\\ +&=-\sum_{m=1}^{\infty} (z-z_0)^{-m} \int_{\gamma} (\xi-z_0)^{m-1} \phi(\xi) d\xi +\end{aligned} +$$ + +So the Cauchy integral $\int_{\gamma} \frac{\phi(\xi)}{\xi-z} d\xi$ is a convergent power series in $B_{d(z_0,\gamma)}(z_0)$ and is a convergent Laurent series (with just negative powers) in $\mathbb{C}\setminus B_{\max_{\xi\in \gamma} d(z_0,\xi)}(z_0)$ + +#### Theorem 8.4 Cauchy Theorem for Annulus + +Suppose $f$ is holomorphic on $A(z_0;R_1,R_2)$, Let $C_r=\{z:|z-z_0|=r\}$, oriented counterclockwise. Then $I(r)=\int_{C_r} f(z) dz$ is independent of $r$ for $R_1