Update Math401_P1_3.md
This commit is contained in:
@@ -191,7 +191,7 @@ $$
|
|||||||
|
|
||||||
as $n\to \infty$.
|
as $n\to \infty$.
|
||||||
|
|
||||||
note that $\lim_{n\to \infty}{1-\frac{a}{n}}=e^{-a}$ for any $a>0$.
|
note that $\lim_{n\to \infty}{(1-\frac{a}{n})^n}=e^{-a}$ for any $a>0$.
|
||||||
|
|
||||||
$(n-\|x\|^2)^{\frac{n-k}{2}}=\left(n(1-\frac{\|x\|^2}{n})\right)^{\frac{n-k}{2}}\to n^{\frac{n-k}{2}}\exp(-\frac{\|x\|^2}{2})$
|
$(n-\|x\|^2)^{\frac{n-k}{2}}=\left(n(1-\frac{\|x\|^2}{n})\right)^{\frac{n-k}{2}}\to n^{\frac{n-k}{2}}\exp(-\frac{\|x\|^2}{2})$
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user