Fix typo
Fix typos introduces more
This commit is contained in:
@@ -16,7 +16,7 @@ $$
|
||||
Pr[x\gets \{0,1\}^n;y=f(x);A(1^n,y)=h(x)]\leq \frac{1}{2}+\epsilon(n)
|
||||
$$
|
||||
|
||||
Idea: $f:\{0,1\}^n\to \{0,1\}^*$ is a one-way function.
|
||||
Ideas: $f:\{0,1\}^n\to \{0,1\}^*$ is a one-way function.
|
||||
|
||||
Given $y=f(x)$, it is hard to recover $x$. A cannot produce all of $x$ but can know some bits of $x$.
|
||||
|
||||
@@ -46,7 +46,7 @@ $\langle x,1^n\rangle=x_1+x_2+\cdots +x_n\mod 2$
|
||||
|
||||
$\langle x,0^{n-1}1\rangle=x_ n$
|
||||
|
||||
Idea of proof:
|
||||
Ideas of proof:
|
||||
|
||||
If A could reliably find $\langle x,1^n\rangle$, with $r$ being completely random, then it could find $x$ too often.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user