Fix typo
Fix typos introduces more
This commit is contained in:
@@ -146,7 +146,7 @@ This proves the claim.
|
||||
|
||||
By definition of supremum, the claim implies that $\forall \epsilon>0$, $diam(\overline{E})\leq 2\epsilon+diam E$. So $diam(\overline{E})\leq diam E$.
|
||||
|
||||
(b) By **Theorem 2.36**, $\bigcap_{n=1}^{\infty}K_n\neq \emptyset$. Suppose for contradiction that there are at least two distinct points $p,q\in \bigcap_{n=1}^{\infty}K_n$. Then for all $n\in \mathbb{N}$, $x,y\in K_n$ so $diam K_n\geq d(p,q)>0$. Then diameter of $K_n$ does not converge to 0.
|
||||
(b) By **Theorem 2.36**, $\bigcap_{n=1}^{\infty}K_n\neq \phi$. Suppose for contradiction that there are at least two distinct points $p,q\in \bigcap_{n=1}^{\infty}K_n$. Then for all $n\in \mathbb{N}$, $x,y\in K_n$ so $diam K_n\geq d(p,q)>0$. Then diameter of $K_n$ does not converge to 0.
|
||||
|
||||
EOP
|
||||
|
||||
|
||||
Reference in New Issue
Block a user