partial updates
This commit is contained in:
@@ -1,50 +1,317 @@
|
||||
# CSE510 Deep Reinforcement Learning (Lecture 22)
|
||||
|
||||
## Offline Reinforcement Learning
|
||||
> Due to lack of my attention, this lecture note is generated by ChatGPT to create continuations of the previous lecture note.
|
||||
|
||||
### Requirements for Current Successes
|
||||
## Offline Reinforcement Learning: Introduction and Challenges
|
||||
|
||||
- Access to the Environment Model or Simulator
|
||||
- Not Costly for Exploration or Trial-and-Error
|
||||
Offline reinforcement learning (offline RL), also called batch RL, aims to learn an optimal policy -without- interacting with the environment. Instead, the agent is given a fixed dataset of transitions collected by an unknown behavior policy.
|
||||
|
||||
#### Background: Offline RL
|
||||
### The Offline RL Dataset
|
||||
|
||||
- The success of modern machine learning
|
||||
- Scalable data-driven learning methods (GPT-4, CLIP,DALL·E, Sora)
|
||||
- Reinforcement learning
|
||||
- Online learning paradigm
|
||||
- Interaction is expensive & dangerous
|
||||
- Healthcare, Robotics, Recommendation...
|
||||
- Can we develop data-driven offline RL?
|
||||
|
||||
#### Definition in Offline RL
|
||||
|
||||
- the policy $\pi_k$ is updated with a static dataset $\mathcal{D}$, which is collected by _unknown behavior policy_ $\pi_\beta$
|
||||
- Interaction is not allowed
|
||||
|
||||
- $\mathcal{D}=\{(s_i,a_i,s_i',r_i)\}$
|
||||
- $s\sim d^{\pi_\beta} (s)$
|
||||
- $a\sim \pi_\beta (a|s)$
|
||||
- $s'\sim p(s'|s,a)$
|
||||
- $r\gets r(s,a)$
|
||||
- Objective: $\max_\pi\sum _{t=0}^{T}\mathbb{E}_{s_t\sim d^\pi(s),a_t\sim \pi(a|s)}[\gamma^tr(s_t,a_t)]$
|
||||
|
||||
#### Key challenge in Offline RL
|
||||
|
||||
Distribution Shift
|
||||
|
||||
How about using the traditional reinforcement learning (bootstrapping)?
|
||||
We are given a static dataset:
|
||||
|
||||
$$
|
||||
Q(s,a)=r(s,a)+\gamma \max_{a'\in A} Q(s',a')
|
||||
D = { (s_i, a_i, s'-i, r_i ) }-{i=1}^N
|
||||
$$
|
||||
|
||||
$$
|
||||
\pi(s)=\arg\max_{a\in A} Q(s,a)
|
||||
$$
|
||||
Parameter explanations:
|
||||
|
||||
but notice that
|
||||
- $s_i$: state sampled from behavior policy state distribution.
|
||||
- $a_i$: action selected by the behavior policy $\pi_beta$.
|
||||
- $s'_i$: next state sampled from environment dynamics $p(s'|s,a)$.
|
||||
- $r_i$: reward observed for transition $(s_i,a_i)$.
|
||||
- $N$: total number of transitions in the dataset.
|
||||
- $D$: full offline dataset used for training.
|
||||
|
||||
The goal is to learn a new policy $\pi$ maximizing expected discounted return using only $D$:
|
||||
|
||||
$$
|
||||
P_{\pi_beta}(s,a)\neq P_{\pi_f}(s,a)
|
||||
$$
|
||||
\max_{\pi} ; \mathbb{E}\Big[\sum_{t=0}^T \gamma^t r(s_t, a_t)\Big]
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $\pi$: policy we want to learn.
|
||||
- $r(s,a)$: reward received for state-action pair.
|
||||
- $\gamma$: discount factor controlling weight of future rewards.
|
||||
- $T$: horizon or trajectory length.
|
||||
|
||||
### Why Offline RL Is Difficult
|
||||
|
||||
Offline RL is fundamentally harder than online RL because:
|
||||
|
||||
- The agent cannot try new actions to fix wrong value estimates.
|
||||
- The policy may choose out-of-distribution actions not present in $D$.
|
||||
- Q-value estimates for unseen actions can be arbitrarily incorrect.
|
||||
- Bootstrapping on wrong Q-values can cause divergence.
|
||||
|
||||
This leads to two major failure modes:
|
||||
|
||||
1. --Distribution shift--: new policy actions differ from dataset actions.
|
||||
2. --Extrapolation error--: the Q-function guesses values for unseen actions.
|
||||
|
||||
### Extrapolation Error Problem
|
||||
|
||||
In standard Q-learning, the Bellman backup is:
|
||||
|
||||
$$
|
||||
Q(s,a) \leftarrow r + \gamma \max_{a'} Q(s', a')
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $Q(s,a)$: estimated value of taking action $a$ in state $s$.
|
||||
- $\max_{a'}$: maximum over possible next actions.
|
||||
- $a'$: candidate next action for evaluation in backup step.
|
||||
|
||||
If $a'$ was rarely or never taken in the dataset, $Q(s',a')$ is poorly estimated, so Q-learning boots off invalid values, causing instability.
|
||||
|
||||
### Behavior Cloning (BC): The Safest Baseline
|
||||
|
||||
The simplest offline method is to imitate the behavior policy:
|
||||
|
||||
$$
|
||||
\max_{\phi} ; \mathbb{E}_{(s,a) \sim D}[\log \pi_{\phi}(a|s)]
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $\phi$: neural network parameters of the cloned policy.
|
||||
- $\pi_{\phi}$: learned policy approximating behavior policy.
|
||||
- $\log \pi_{\phi}(a|s)$: negative log-likelihood loss.
|
||||
|
||||
Pros:
|
||||
|
||||
- Does not suffer from extrapolation error.
|
||||
- Extremely stable.
|
||||
|
||||
Cons:
|
||||
|
||||
- Cannot outperform the behavior policy.
|
||||
- Ignores reward information entirely.
|
||||
|
||||
### Naive Offline Q-Learning Fails
|
||||
|
||||
Directly applying off-policy Q-learning on $D$ generally leads to:
|
||||
|
||||
- Overestimation of unseen actions.
|
||||
- Divergence due to extrapolation error.
|
||||
- Policies worse than behavior cloning.
|
||||
|
||||
## Strategies for Safe Offline RL
|
||||
|
||||
There are two primary families of solutions:
|
||||
|
||||
1. --Policy constraint methods--
|
||||
2. --Conservative value estimation methods--
|
||||
|
||||
---
|
||||
|
||||
# 1. Policy Constraint Methods
|
||||
|
||||
These methods restrict the learned policy to stay close to the behavior policy so it does not take unsupported actions.
|
||||
|
||||
### Advantage Weighted Regression (AWR / AWAC)
|
||||
|
||||
Policy update:
|
||||
|
||||
$$
|
||||
\pi(a|s) \propto \pi_{beta}(a|s)\exp\left(\frac{1}{\lambda}A(s,a)\right)
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $\pi_{beta}$: behavior policy used to collect dataset.
|
||||
- $A(s,a)$: advantage function derived from Q or V estimates.
|
||||
- $\lambda$: temperature controlling strength of advantage weighting.
|
||||
- $\exp(\cdot)$: positive weighting on high-advantage actions.
|
||||
|
||||
Properties:
|
||||
|
||||
- Uses advantages to filter good and bad actions.
|
||||
- Improves beyond behavior policy while staying safe.
|
||||
|
||||
### Batch-Constrained Q-learning (BCQ)
|
||||
|
||||
BCQ constrains the policy using a generative model:
|
||||
|
||||
1. Train a VAE $G_{\omega}$ to model $a$ given $s$.
|
||||
2. Train a small perturbation model $\xi$.
|
||||
3. Limit the policy to $a = G_{\omega}(s) + \xi(s)$.
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $G_{\omega}(s)$: VAE-generated action similar to data actions.
|
||||
- $\omega$: VAE parameters.
|
||||
- $\xi(s)$: small correction to generated actions.
|
||||
- $a$: final policy action constrained near dataset distribution.
|
||||
|
||||
BCQ avoids selecting unseen actions and strongly reduces extrapolation.
|
||||
|
||||
### BEAR (Bootstrapping Error Accumulation Reduction)
|
||||
|
||||
BEAR adds explicit constraints:
|
||||
|
||||
$$
|
||||
D_{MMD}\left(\pi(a|s), \pi_{beta}(a|s)\right) < \epsilon
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $D_{MMD}$: Maximum Mean Discrepancy distance between action distributions.
|
||||
- $\epsilon$: threshold restricting policy deviation from behavior policy.
|
||||
|
||||
BEAR controls distribution shift more tightly than BCQ.
|
||||
|
||||
---
|
||||
|
||||
# 2. Conservative Value Function Methods
|
||||
|
||||
These methods modify Q-learning so Q-values of unseen actions are -underestimated-, preventing the policy from exploiting overestimated values.
|
||||
|
||||
### Conservative Q-Learning (CQL)
|
||||
|
||||
One formulation is:
|
||||
|
||||
$$
|
||||
J(Q) = J_{TD}(Q) + \alpha\big(\mathbb{E}_{a\sim\pi(\cdot|s)}Q(s,a) - \mathbb{E}_{a\sim D}Q(s,a)\big)
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $J_{TD}$: standard Bellman TD loss.
|
||||
- $\alpha$: weight of conservatism penalty.
|
||||
- $\mathbb{E}_{a\sim\pi(\cdot|s)}$: expectation over policy-chosen actions.
|
||||
- $\mathbb{E}_{a\sim D}$: expectation over dataset actions.
|
||||
|
||||
Effect:
|
||||
|
||||
- Increases Q-values of dataset actions.
|
||||
- Decreases Q-values of out-of-distribution actions.
|
||||
|
||||
### Implicit Q-Learning (IQL)
|
||||
|
||||
IQL avoids constraints entirely by using expectile regression:
|
||||
|
||||
Value regression:
|
||||
|
||||
$$
|
||||
V(s) = \arg\min_{v} ; \mathbb{E}\big[\rho_{\tau}(Q(s,a) - v)\big]
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $v$: scalar value estimate for state $s$.
|
||||
- $\rho_{\tau}(x)$: expectile regression loss.
|
||||
- $\tau$: expectile parameter controlling conservatism.
|
||||
- $Q(s,a)$: Q-value estimate.
|
||||
|
||||
Key idea:
|
||||
|
||||
- For $\tau < 1$, IQL reduces sensitivity to large (possibly incorrect) Q-values.
|
||||
- Implicitly conservative without special constraints.
|
||||
|
||||
IQL often achieves state-of-the-art performance due to simplicity and stability.
|
||||
|
||||
---
|
||||
|
||||
# Model-Based Offline RL
|
||||
|
||||
### Forward Model-Based RL
|
||||
|
||||
Train a dynamics model:
|
||||
|
||||
$$
|
||||
p_{\theta}(s'|s,a)
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $p_{\theta}$: learned transition model.
|
||||
- $\theta$: parameters of transition model.
|
||||
|
||||
We can generate synthetic transitions using $p_{\theta}$, but model error accumulates.
|
||||
|
||||
### Penalty-Based Model Approaches (MOPO, MOReL)
|
||||
|
||||
Add uncertainty penalty:
|
||||
|
||||
$$
|
||||
r_{model}(s,a) = r(s,a) - \beta , u(s,a)
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $r_{model}$: penalized reward for model rollouts.
|
||||
- $u(s,a)$: model uncertainty estimate.
|
||||
- $\beta$: penalty coefficient.
|
||||
|
||||
These methods limit exploration into unknown model regions.
|
||||
|
||||
---
|
||||
|
||||
# Reverse Model-Based Imagination (ROMI)
|
||||
|
||||
ROMI generates new training data by -backward- imagination.
|
||||
|
||||
### Reverse Dynamics Model
|
||||
|
||||
ROMI learns:
|
||||
|
||||
$$
|
||||
p_{\psi}(s_{t} \mid s_{t+1}, a_{t})
|
||||
$$
|
||||
|
||||
Parameter explanations:
|
||||
|
||||
- $\psi$: parameters of reverse dynamics model.
|
||||
- $s_{t+1}$: later state.
|
||||
- $a_{t}$: action taken leading to $s_{t+1}$.
|
||||
- $s_{t}$: predicted predecessor state.
|
||||
|
||||
ROMI also learns a reverse policy for sampling likely predecessor actions.
|
||||
|
||||
### Reverse Imagination Process
|
||||
|
||||
Given a goal state $s_{g}$:
|
||||
|
||||
1. Sample $a_{t}$ from reverse policy.
|
||||
2. Predict $s_{t}$ from reverse dynamics.
|
||||
3. Form imagined transition $(s_{t}, a_{t}, s_{t+1})$.
|
||||
4. Repeat to build longer imagined trajectories.
|
||||
|
||||
Benefits:
|
||||
|
||||
- Imagined transitions end in real states, ensuring grounding.
|
||||
- Completes missing parts of dataset.
|
||||
- Helps propagate reward backward reliably.
|
||||
|
||||
ROMI combined with conservative RL often outperforms standard offline methods.
|
||||
|
||||
---
|
||||
|
||||
# Summary of Lecture 22
|
||||
|
||||
Offline RL requires balancing:
|
||||
|
||||
- Improvement beyond dataset behavior.
|
||||
- Avoiding unsafe extrapolation to unseen actions.
|
||||
|
||||
Three major families of solutions:
|
||||
|
||||
1. Policy constraints (BCQ, BEAR, AWR)
|
||||
2. Conservative Q-learning (CQL, IQL)
|
||||
3. Model-based conservatism and imagination (MOPO, MOReL, ROMI)
|
||||
|
||||
Offline RL is becoming practical for real-world domains such as healthcare, robotics, autonomous driving, and recommender systems.
|
||||
|
||||
---
|
||||
|
||||
# Recommended Screenshot Frames for Lecture 22
|
||||
|
||||
- Lecture 22, page 7: Offline RL diagram showing policy learning from fixed dataset, subsection "Offline RL Setting".
|
||||
- Lecture 22, page 35: Illustration of dataset support vs policy action distribution, subsection "Strategies for Safe Offline RL".
|
||||
|
||||
---
|
||||
|
||||
--End of CSE510_L22.md--
|
||||
|
||||
Reference in New Issue
Block a user