From a30383150962b77b14c0af6ca7eb7915df36efc6 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Thu, 3 Apr 2025 13:05:22 -0500 Subject: [PATCH] Create Math416_L21.md --- pages/Math416/Math416_L21.md | 98 ++++++++++++++++++++++++++++++++++++ 1 file changed, 98 insertions(+) create mode 100644 pages/Math416/Math416_L21.md diff --git a/pages/Math416/Math416_L21.md b/pages/Math416/Math416_L21.md new file mode 100644 index 0000000..9deb72f --- /dev/null +++ b/pages/Math416/Math416_L21.md @@ -0,0 +1,98 @@ +# Math416 Lecture 21 + +## Chapter 9: Generalized Cauchy's Theorem + +### Simple connectedness + +#### Proposition 9.1 + +Let $\phi$ be a continuous nowhere vanishing function from $[a,b]\subset\mathbb{R}$ to $\mathbb{C}\setminus\{0\}$. Then there exists a continuous function $\psi:[a,b]\to\mathbb{C}$ such that $e^{\psi(t)}=\phi(t)$ for all $t\in[a,b]$. + +Moreover, $\psi$ is uniquely determined up to an additive integer multiple of $2\pi i \mathbb{Z}$. + +Proof: + +Uniqueness: + +Suppose $\phi_1$ and $\phi_2$ are both continuous functions so that $e^{\phi_1(t)}=\phi(t)=e^{\phi_2(t)}$ for all $t\in[a,b]$. + +Then $e^{\phi_1(t)-\phi_2(t)}=1$ for all $t\in[a,b]$. So $\phi_1(t)-\phi_2(t)=2k\pi i$ for some $k\in\mathbb{Z}$. + +Existence: + +Case 1: Assume $range(\phi)\subset H$ where $H$ is an open half-plane with the origin $0\in \partial H$. + +We know there is a branch $l(z)$ of $\log z$ defined on $H$ with $Log(z)=\log|z|+i\theta(z)$ for some $\arg(z)\in(\alpha,\alpha+\pi)$. + +Let $\psi(t)=l(\phi(t))$. + +Then $e^{\psi(t)}=e^{l(\phi(t))}=\phi(t)$. and $\psi$ is continuous. + +Case 2: By compactness of $[a,b]$, there exists a partition $a=t_0 Recall: +> +> Compactness: A set is compact if and only if every open cover has a finite subcover. + +Let $s\in [a,b]$ and there exists $\epsilon(s)>0$ such that $\phi((s-\epsilon(s),s+\epsilon(s)))$ is contained in some open half plane. + +$$ +\begin{aligned} +[a,b]&=\bigcup_{s\in[a,b]}(s-\epsilon(s),s+\epsilon(s))\cup[a,a+\epsilon(a))\cup(b-\epsilon(b),b] \\ +&=\bigcup_{j=1}^n(s_j-\epsilon(s_j),s_j+\epsilon(s_j))\cup[a,a+\epsilon(a))\cup(b-\epsilon(b),b] +\end{aligned} +$$ + +We choose $t_j\in[s_j-\epsilon(s_j),s_j+\epsilon(s_j)]\cup[s_{j+1}-\epsilon(s_{j+1}),s_{j+1}+\epsilon(s_{j+1})]$ for each $j=1,\cdots,n-1$. + +On each interval $[t_j,t_{j+1}]$, we can find a $\psi_j(t)$ such that $e^{\psi_j(t)}=\phi(t)$, $\psi_j(t)$ is continuous on $[t_j,t_{j+1}]$. And we can choose $\psi_{j+1}(t_{j+1})=\psi_j(t_{j+1})$. + +Defined $\psi(t)=\{\psi_j(t), t\in[t_j,t_{j+1}]\}$ for $j=1,\cdots,n-1$. + +QED + +### Increment of a log and argument + +If $f\circ\gamma:[a,b]\to\mathbb{C}\setminus\{0\}$ is continuous, then $\exists \psi:[a,b]\to\mathbb{C}$ such that $e^{\psi(t)}=f(\gamma(t))$ for all $t\in[a,b]$. + +We defined the increment in $\log f$ on $\gamma$ as $\Delta(\log f,\gamma)=\psi(b)-\psi(a)$. + +The increment in $\arg f$ on $\gamma$ is defined as $\Delta(\arg f,\gamma)=Im[\psi(b)]-Im[\psi(a)]$. + +If $\gamma$ is a closed curve, then $f\circ\gamma(a)=f\circ\gamma(b)$. Then $\Delta(\log f,\gamma)\in 2\pi i\mathbb{Z}$, $\Delta(\arg f,\gamma)\in 2\pi\mathbb{Z}$. + +Assume $\gamma$ is piecewise continuous and $f$ is continuous and $f(z)\neq 0$ for all $z\in\gamma$. + +$$ +\begin{aligned} +\Delta(\log f,\gamma)&=\psi(b)-\psi(a) \\ +&=\int_a^b\frac{d}{dt}\log f(\gamma(t))dt \\ +&=\int_a^b\frac{f'(\gamma(t))\gamma'(t)}{f(\gamma(t))}dt \\ +&=\int_\gamma\frac{f'(z)}{f(z)}dz +\end{aligned} +$$ + +If $\gamma$ is closed, then $\Delta(\log f,\gamma)=\int_\gamma\frac{f'(z)}{f(z)}dz=0$, $\Delta(\arg f,\gamma)=\frac{1}{i}\int_\gamma\frac{f'(z)}{f(z)}dz=0$. + +Special case: + +When $f(z)=z-z_0$, $z_0\notin range(\gamma)$, then $\Delta(\arg (z-z_0),\gamma)\in 2\pi\mathbb{Z}$. + +The winding number of $\gamma$ around $z_0$ is defined as $n(\gamma,z_0)=\frac{1}{2\pi i}\Delta(\arg (z-z_0),\gamma)$. + +_also the same as the number of times $\gamma$ winds around $z_0$ counterclockwise._ + +Winding number is always zero outside the curve. + +### Contour + +A contour is a formed piecewise combination of piecewise continuous closed curves with integer coefficients. + +$$ +\Gamma=\sum_{j=1}^p n_j\gamma_j +$$ + +where $\gamma_j$ are piecewise continuous closed curves and $n_j\in\mathbb{Z}$. + +A contour is called a simple if the winding number of $\Gamma$ is zero or one. +