diff --git a/pages/Math4121/Math4121_L12.md b/pages/Math4121/Math4121_L12.md index d169718..d200007 100644 --- a/pages/Math4121/Math4121_L12.md +++ b/pages/Math4121/Math4121_L12.md @@ -1,4 +1,4 @@ -# Lecture 12 +# Math4121 Lecture 12 ## Chapter 7: Uniform Convergence and Integrals diff --git a/pages/Math4121/Math4121_L14.md b/pages/Math4121/Math4121_L14.md index 11919a3..11cf898 100644 --- a/pages/Math4121/Math4121_L14.md +++ b/pages/Math4121/Math4121_L14.md @@ -2,9 +2,9 @@ ## Recap -### Hankel developedn Riemann's integrabilty criterion. +### Hankel developed Riemann's integrabilty criterion. -#### Definition +#### Definition: Oscillation Given an interval $I\subset[a,b]$, $f:[a,b]\to\mathbb{R}$ the oscillation of $f$ at $I$ is @@ -12,8 +12,88 @@ $$ \omega(f,I) = \sup_I f - \inf_I f $$ -#### Theorem +#### Theorem 2.5: Riemann's Integrability Criterion -A bounded function $f$ is Riemann integrable if and only if +A bounded function $f$ is Riemann integrable if and only if for every $\sigma,\epsilon>0$ there exists a partition $P$ of $[a,b]$ such that + +$$ +\sum_{i\in \mathcal{P}}\Delta x_i<\epsilon +$$ + +where $\mathcal{P}=\{i:\omega(f,I_i)>\sigma\}$. + +Proof as homework questions. + +#### Corollary 2.4 + +For point $c\in[a,b]$, define the oscillation at $c$ as + +$$ +\omega(f,c) = \inf_{c\in I}\omega(f,I) +$$ + +Homework question 6: $f$ is continuous at $c$ if and only if $\omega(f,c)=0$. + +So we can restate the previous theorem as: + +Given $\sigma>0$, define $S_\sigma=\{c\in[a,b]:\omega(f,c)>\sigma\}$. + +Restate the theorem as: + +$f\in\mathscr{R}[a,b]$ if and only if for every $\sigma,\epsilon>0$ there exists intervals $I_1,I_2,\cdots,I_n$ such that $S_\sigma\subset\bigcup_{i=1}^{n}I_i$ and $\sum_{i=1}^{n}\ell(I_i)<\epsilon$. where $\ell(I)$ is the length of the interval $I$. + +#### Definition: Outer content + +Given a set $S$, a **finite cover** of $S$ is a collection of intervals $C=\{I_1,I_2,\cdots,I_n\}$ such that $S\subseteq\bigcup_{i=1}^{n}I_i$. + +The length of the cover $C$ is $\ell(C)=\sum_{i=1}^{n}\ell(I_i)$. + +The **outer content** of $S$ is + +$$ +c_e(S) = \inf_{c\in C_s}\ell(C) +$$ + +where $\C_s$ is the set of all finite covers of $S$. + +Example: + +$S=\{x_1,\ldots,x_n\}$, then $c_e(S)=0$. + +- Let $I_i=(x_i-\frac{\epsilon}{2n},x_i+\frac{\epsilon}{2n})$, so $\sum_{i=1}^{n}\ell(I_i)=\epsilon$ + +$S=\{\frac{1}{n}\}_{n=1}^{\infty}$, then $c_e(S)=0$. + +- In this case, we can only use finite cover, however, there is only one "accumulation point", so we can cover it with a single interval, and the remaining points can be covered by finite intervals. (for any $\epsilon>0$, we can construct a **finite cover** with length $\epsilon$ that covers all points.) + +$S=\mathbb{Q}\cap[0,1]$, then $c_e(S)=1$. + +- In this case, by covering the interval with $[0,1]$, we can get the length of the cover is at most 1. +- Suppose there exists a cover $C$ with $\sum_{I\in C}\ell(I)<1$, then there must be a gap in the intervals, however, since the $\mathbb{Q}$ is dense in $\mathbb{R}$, there must be a point in the gap, which is a contradiction. + +#### Theorem 2.5: Hankel's criterion for Riemann integrability + +A function $f\in\mathscr{R}[a,b]$ if and only if $c_e(S_\sigma)=0$ for all $\sigma>0$. + +_The idea is that if the oscillation of a function can be bounded by a finite set that the total length is small, then the function is Riemann integrable._ + +Hankel's idea was to apply this theorem to determining how discontinuous a function could be a Riemann integrable function. + +> A set $S$ is dense in $X$ if every point of $X$ is a limit point of $S$. + +#### Definition: Totally discontinuous + +$f$ is **totally discontinuous** if the points of continuity of $f$ are not dense. + +For example, $f(x)=\begin{cases} +0 & x\in\mathbb{Q}\\ +1 & x\notin\mathbb{Q} +\end{cases}$ is totally discontinuous. + +#### Definition: Pointwise discontinuity + +$f$ is **pointwise discontinuous** if they are dense in $[a,b]$. + +Hankel's conjecture: $f$ is pointwise discontinuous, then $f$ is integrable. diff --git a/pages/Math4121/index.md b/pages/Math4121/index.md index 9424614..5ec3ae3 100644 --- a/pages/Math4121/index.md +++ b/pages/Math4121/index.md @@ -1,6 +1,6 @@ # Math 4121 -Riemann integration; measurable functions; measures; the Lebesgue integral; integrable functions; $L^p$ spaces. +Riemann integration; measurable functions; Measures; the Lebesgue integral; integrable functions; $L^p$ spaces. ## Textbook