updates
This commit is contained in:
@@ -234,7 +234,7 @@ Then the measurable space $(\Omega, \mathscr{B}(\mathbb{C}), \lambda)$ is a meas
|
||||
|
||||
If $\Omega=\mathbb{R}$, then we denote such measurable space as $L^2(\mathbb{R}, \lambda)$.
|
||||
|
||||
<details>
|
||||
</details>
|
||||
|
||||
#### Probability space
|
||||
|
||||
@@ -426,7 +426,7 @@ is a pure state.
|
||||
|
||||
</details>
|
||||
|
||||
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$
|
||||
## Drawing the connection between the space $S^{2n+1}$, $\mathbb{C}P^n$, and $\mathbb{R}$
|
||||
|
||||
A pure quantum state of size $N$ can be identified with a **Hopf circle** on the sphere $S^{2N-1}$.
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
# Math 401, Fall 2025: Thesis notes, S4, Bargmann space
|
||||
# Math 401, Fall 2025: Thesis notes, S4, Complex function spaces and complex manifold
|
||||
|
||||
## Bargmann space (original)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user