updates
This commit is contained in:
@@ -1,2 +1,19 @@
|
|||||||
# CSE5519 Advances in Computer Vision (Topic E: 2024: Deep Learning for Geometric Computer Vision)
|
# CSE5519 Advances in Computer Vision (Topic E: 2024: Deep Learning for Geometric Computer Vision)
|
||||||
|
|
||||||
|
## DUSt3R: Geometric 3D Vision Made Easy.Links to an external site.
|
||||||
|
|
||||||
|
[link to paper](https://arxiv.org/pdf/2312.14132)
|
||||||
|
|
||||||
|
### Novelty in DUSt3R
|
||||||
|
|
||||||
|
Use point map to represent the 3D scene, combining with the camera intrinsics to estimate the 3D scene.
|
||||||
|
|
||||||
|
Direct-RGB to 3D scene.
|
||||||
|
|
||||||
|
Use ViT to encode the image, and then use two Transformer decoder (with information sharing between them) to decode the two representation of the same scene $F_1$ and $F_2$. Direct regression from RGB to point map and confidence map.
|
||||||
|
|
||||||
|
>[!TIP]
|
||||||
|
>
|
||||||
|
> Compared with previous works, this paper directly regresses the point map and confidence map from RGB, producing a more accurate and efficient 3D scene representation.
|
||||||
|
>
|
||||||
|
> However, I'm not sure how the information across the two representations is shared in the Transformer decoder. If for a multiview image, there are two pairs of images that don't have any overlapping region, how can the model correctly reconstruct the 3D scene?
|
||||||
|
|||||||
@@ -234,7 +234,7 @@ Then the measurable space $(\Omega, \mathscr{B}(\mathbb{C}), \lambda)$ is a meas
|
|||||||
|
|
||||||
If $\Omega=\mathbb{R}$, then we denote such measurable space as $L^2(\mathbb{R}, \lambda)$.
|
If $\Omega=\mathbb{R}$, then we denote such measurable space as $L^2(\mathbb{R}, \lambda)$.
|
||||||
|
|
||||||
<details>
|
</details>
|
||||||
|
|
||||||
#### Probability space
|
#### Probability space
|
||||||
|
|
||||||
@@ -426,7 +426,7 @@ is a pure state.
|
|||||||
|
|
||||||
</details>
|
</details>
|
||||||
|
|
||||||
## Drawing the connection between the space $S^{2n+1}$, $CP^n$, and $\mathbb{R}$
|
## Drawing the connection between the space $S^{2n+1}$, $\mathbb{C}P^n$, and $\mathbb{R}$
|
||||||
|
|
||||||
A pure quantum state of size $N$ can be identified with a **Hopf circle** on the sphere $S^{2N-1}$.
|
A pure quantum state of size $N$ can be identified with a **Hopf circle** on the sphere $S^{2N-1}$.
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Math 401, Fall 2025: Thesis notes, S4, Bargmann space
|
# Math 401, Fall 2025: Thesis notes, S4, Complex function spaces and complex manifold
|
||||||
|
|
||||||
## Bargmann space (original)
|
## Bargmann space (original)
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user