update
This commit is contained in:
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 1
|
# CSE559A Lecture 1
|
||||||
|
|
||||||
## Introducing the syllabus
|
## Introducing the syllabus
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 2
|
# CSE559A Lecture 2
|
||||||
|
|
||||||
## The Geometry of Image Formation
|
## The Geometry of Image Formation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 3
|
# CSE559A Lecture 3
|
||||||
|
|
||||||
## Image formation
|
## Image formation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 4
|
# CSE559A Lecture 4
|
||||||
|
|
||||||
## Practical issues with filtering
|
## Practical issues with filtering
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 5
|
# CSE559A Lecture 5
|
||||||
|
|
||||||
## Continue on linear interpolation
|
## Continue on linear interpolation
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 6
|
# CSE559A Lecture 6
|
||||||
|
|
||||||
## Continue on Light, eye/camera, and color
|
## Continue on Light, eye/camera, and color
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 7
|
# CSE559A Lecture 7
|
||||||
|
|
||||||
## Computer Vision (In Artificial Neural Networks for Image Understanding)
|
## Computer Vision (In Artificial Neural Networks for Image Understanding)
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 8
|
# CSE559A Lecture 8
|
||||||
|
|
||||||
Paper review sharing.
|
Paper review sharing.
|
||||||
|
|
||||||
@@ -78,10 +78,3 @@ $$
|
|||||||
$$
|
$$
|
||||||
|
|
||||||
#### General backpropagation algorithm
|
#### General backpropagation algorithm
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
102
pages/CSE559A/CSE559A_L9.md
Normal file
102
pages/CSE559A/CSE559A_L9.md
Normal file
@@ -0,0 +1,102 @@
|
|||||||
|
# CSE559A Lecture 9
|
||||||
|
|
||||||
|
## Continue on ML for computer vision
|
||||||
|
|
||||||
|
### Backpropagation
|
||||||
|
|
||||||
|
#### Computation graphs
|
||||||
|
|
||||||
|
SGD update for each parameter
|
||||||
|
|
||||||
|
$$
|
||||||
|
w_k\gets w_k-\eta\frac{\partial e}{\partial w_k}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$e$ is the error function.
|
||||||
|
|
||||||
|
#### Using the chain rule
|
||||||
|
|
||||||
|
Suppose $k=1$, $e=l(f_1(x,w_1),y)$
|
||||||
|
|
||||||
|
Example: $e=(f_1(x,w_1)-y)^2$
|
||||||
|
|
||||||
|
So $h_1=f_1(x,w_1)=w^T_1x$, $e=l(h_1,y)=(y-h_1)^2$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial e}{\partial w_1}=\frac{\partial e}{\partial h_1}\frac{\partial h_1}{\partial w_1}
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial e}{\partial h_1}=2(h_1-y)
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial h_1}{\partial w_1}=x
|
||||||
|
$$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial e}{\partial w_1}=2(h_1-y)x
|
||||||
|
$$
|
||||||
|
|
||||||
|
For the general cases,
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial e}{\partial w_k}=\frac{\partial e}{\partial h_K}\frac{\partial h_K}{\partial h_{K-1}}\cdots\frac{\partial h_{k+2}}{\partial h_{k+1}}\frac{\partial h_{k+1}}{\partial h_k}\frac{\partial h_k}{\partial w_k}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Where the upstream gradient $\frac{\partial e}{\partial h_K}$ is known, and the local gradient $\frac{\partial h_k}{\partial w_k}$ is known.
|
||||||
|
|
||||||
|
#### General backpropagation algorithm
|
||||||
|
|
||||||
|
The adding layer is the gradient distributor layer.
|
||||||
|
The multiplying layer is the gradient switcher layer.
|
||||||
|
The max operation is the gradient router layer.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
Simple example: Element-wise operation (ReLU)
|
||||||
|
|
||||||
|
$f(x)=ReLU(x)=max(0,x)$
|
||||||
|
|
||||||
|
$$
|
||||||
|
\frac{\partial z}{\partial x}=\begin{pmatrix}
|
||||||
|
\frac{\partial z_1}{\partial x_1} & 0 & \cdots & 0 \\
|
||||||
|
0 & \frac{\partial z_2}{\partial x_2} & \cdots & 0 \\
|
||||||
|
\vdots & \vdots & \ddots & \vdots \\
|
||||||
|
0 & 0 & \cdots & \frac{\partial z_n}{\partial x_n}
|
||||||
|
\end{pmatrix}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Where $\frac{\partial z_i}{\partial x_j}=1$ if $i=j$ and $z_i>0$, otherwise $\frac{\partial z_i}{\partial x_j}=0$.
|
||||||
|
|
||||||
|
When $\forall x_i<0$ then $\frac{\partial z}{\partial x}=0$ (dead ReLU)
|
||||||
|
|
||||||
|
Other examples on ppt.
|
||||||
|
|
||||||
|
## Convolutional Neural Networks
|
||||||
|
|
||||||
|
### Basic Convolutional layer
|
||||||
|
|
||||||
|
#### Flatten layer
|
||||||
|
|
||||||
|
Fully connected layer, operate on vectorized image.
|
||||||
|
|
||||||
|
With the multi-layer perceptron, the neural network trying to fit the templates.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
#### Convolutional layer
|
||||||
|
|
||||||
|
Limit the receptive fields of units, tiles them over the input image, and share the weights.
|
||||||
|
|
||||||
|
Equivalent to sliding the learned filter over the image , computing dot products at each location.
|
||||||
|
|
||||||
|

|
||||||
|
|
||||||
|
Padding: Add a border of zeros around the image. (higher padding, larger output size)
|
||||||
|
|
||||||
|
Stride: The step size of the filter. (higher stride, smaller output size)
|
||||||
|
|
||||||
|
### Variants 1x1 convolutions, depthwise convolutions
|
||||||
|
|
||||||
|
### Backward pass
|
||||||
@@ -11,4 +11,5 @@ export default {
|
|||||||
CSE559A_L6: "Computer Vision (Lecture 6)",
|
CSE559A_L6: "Computer Vision (Lecture 6)",
|
||||||
CSE559A_L7: "Computer Vision (Lecture 7)",
|
CSE559A_L7: "Computer Vision (Lecture 7)",
|
||||||
CSE559A_L8: "Computer Vision (Lecture 8)",
|
CSE559A_L8: "Computer Vision (Lecture 8)",
|
||||||
|
CSE559A_L9: "Computer Vision (Lecture 9)",
|
||||||
}
|
}
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 1
|
# Math416 Lecture 1
|
||||||
|
|
||||||
## Chapter 1: Complex Numbers
|
## Chapter 1: Complex Numbers
|
||||||
|
|
||||||
|
|||||||
@@ -1,4 +1,4 @@
|
|||||||
# Lecture 2
|
# Math416 Lecture 2
|
||||||
|
|
||||||
## Review?
|
## Review?
|
||||||
|
|
||||||
|
|||||||
BIN
public/CSE559A/Convolutional_layer.png
Normal file
BIN
public/CSE559A/Convolutional_layer.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.5 KiB |
BIN
public/CSE559A/Flatten_layer.png
Normal file
BIN
public/CSE559A/Flatten_layer.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 15 KiB |
BIN
public/CSE559A/General_computation_graphs_for_MLP.png
Normal file
BIN
public/CSE559A/General_computation_graphs_for_MLP.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 114 KiB |
Reference in New Issue
Block a user