From aca0058a8e5eaf6ecb37329103cd55e54d1733ff Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Wed, 16 Apr 2025 10:28:17 -0500 Subject: [PATCH] update build and types --- Jenkinsfile | 17 ++++++++++++++-- pages/CSE559A/CSE559A_L22.md | 36 +++++++++++++++++----------------- pages/Math4121/Math4121_L35.md | 33 +++++++++++++++++++++++++++++++ 3 files changed, 66 insertions(+), 20 deletions(-) create mode 100644 pages/Math4121/Math4121_L35.md diff --git a/Jenkinsfile b/Jenkinsfile index 666e4d3..04f7cfe 100644 --- a/Jenkinsfile +++ b/Jenkinsfile @@ -20,12 +20,25 @@ pipeline { steps { script { echo "Building docker image ${registry}:${version}.${env.BUILD_ID}" - def customImage = docker.build("${registry}:${version}.${env.BUILD_ID}") + def customImage = docker.build("${registry}:v${version}.${env.BUILD_ID}") - echo "Pushing docker image ${registry}:${version}.${env.BUILD_ID}" + echo "Pushing docker image ${registry}:v${version}.${env.BUILD_ID}" customImage.push() } } } + stage('Deploy') { + steps { + echo "Deploying docker image ${registry}:v${version}.${env.BUILD_ID}" + echo "Stopping existing container" + sh 'docker stop notenextra' + echo "Removing existing container" + sh 'docker rm notenextra' + echo "Running new docker container" + sh 'docker run -d -p 13000:3000 --name notenextra ${registry}:v${version}.${env.BUILD_ID}' + } + } } } + +} diff --git a/pages/CSE559A/CSE559A_L22.md b/pages/CSE559A/CSE559A_L22.md index 0c707f1..345474b 100644 --- a/pages/CSE559A/CSE559A_L22.md +++ b/pages/CSE559A/CSE559A_L22.md @@ -166,11 +166,11 @@ y \\ \end{pmatrix} $$ -Constraint from a match $(x_i,x_i^′)$: $x_i^′≅Hx_i$ +Constraint from a match $(x_i,x_i^')$: $x_i^'≅Hx_i$ How can we get rid of the scale ambiguity? -Cross product trick: $x_i^′ × Hx_i=0$ +Cross product trick: $x_i^' × Hx_i=0$ The cross product is defined as: @@ -181,9 +181,9 @@ $$ Let $h_1^T, h_2^T, h_3^T$ be the rows of $H$. Then $$ -x_i^′ × Hx_i=\begin{pmatrix} - x_i^′ \\ - y_i^′ \\ +x_i^' × Hx_i=\begin{pmatrix} + x_i^' \\ + y_i^' \\ 1 \end{pmatrix} \times \begin{pmatrix} h_1^T x_i \\ @@ -192,18 +192,18 @@ x_i^′ × Hx_i=\begin{pmatrix} \end{pmatrix} = \begin{pmatrix} - y_i^′ h_3^T x_i−h_2^T x_i \\ - h_1^T x_i−x_i^′ h_3^T x_i \\ - x_i^′ h_2^T x_i−y_i^′ h_1^T x_i + y_i^' h_3^T x_i−h_2^T x_i \\ + h_1^T x_i−x_i^' h_3^T x_i \\ + x_i^' h_2^T x_i−y_i^' h_1^T x_i \end{pmatrix} $$ -Constraint from a match $(x_i,x_i^′)$: +Constraint from a match $(x_i,x_i^')$: $$ -x_i^′ × Hx_i=\begin{pmatrix} - x_i^′ \\ - y_i^′ \\ +x_i^' × Hx_i=\begin{pmatrix} + x_i^' \\ + y_i^' \\ 1 \end{pmatrix} \times \begin{pmatrix} h_1^T x_i \\ @@ -212,9 +212,9 @@ x_i^′ × Hx_i=\begin{pmatrix} \end{pmatrix} = \begin{pmatrix} - y_i^′ h_3^T x_i−h_2^T x_i \\ - h_1^T x_i−x_i^′ h_3^T x_i \\ - x_i^′ h_2^T x_i−y_i^′ h_1^T x_i + y_i^' h_3^T x_i−h_2^T x_i \\ + h_1^T x_i−x_i^' h_3^T x_i \\ + x_i^' h_2^T x_i−y_i^' h_1^T x_i \end{pmatrix} $$ @@ -222,9 +222,9 @@ Rearranging the terms: $$ \begin{bmatrix} - 0^T &-x_i^T &y_i^′ x_i^T \\ - x_i^T &0^T &-x_i^′ x_i^T \\ - y_i^′ x_i^T &x_i^′ x_i^T &0^T + 0^T &-x_i^T &y_i^' x_i^T \\ + x_i^T &0^T &-x_i^' x_i^T \\ + y_i^' x_i^T &x_i^' x_i^T &0^T \end{bmatrix} \begin{bmatrix} h_1 \\ diff --git a/pages/Math4121/Math4121_L35.md b/pages/Math4121/Math4121_L35.md new file mode 100644 index 0000000..08a6fd6 --- /dev/null +++ b/pages/Math4121/Math4121_L35.md @@ -0,0 +1,33 @@ +# Math4121 Lecture 35 + +## Continue on Lebesgue Integration + +### Lebesgue Integration + +#### Definition of Lebesgue Integral + +For simple functions $\phi = \sum_{i=1}^{n} a_i \chi_{S_i}$, given a measure $E$, the Lebesgue integral is defined as: + +$$ +\int_{\mathbb{R}^n} \phi \, dm = \sum_{i=1}^{n} a_i m(S_i\cap E) +$$ + + +Given a non-negative measurable function $f$ and a measurable set $E$. + +Define $\int_E f \, dm = \sup \left\{ \int_E \phi \, dm : \phi \text{ is a simple function and } \phi \leq f \right\}$ + +(**We do allows $\int_E f \, dm = \infty$**) + +For general measurable function $f$, we can define $f^-(x)=\max\{0,-f(x)\}$, $f^+(x)=\max\{0,f(x)\}$. (The positive part of the function and the negative part of the function, both non-negative) + +Then $f=f^+-f^-$. + +We say $f$ is integrable if $\int_E f^+ \, dm < \infty$ and $\int_E f^- \, dm < \infty$. (both finite) If at least one is finite, define + +$$ +\int_E f \, dm = \int_E f^+ \, dm - \int_E f^- \, dm +$$ + +We allow for $A-\infty = -\infty$ and $A+\infty = \infty$ for any $A\in \mathbb{R}$. But not $\infty-\infty$. +