diff --git a/content/Math4201/Math4201_L16.md b/content/Math4201/Math4201_L16.md new file mode 100644 index 0000000..2739b5f --- /dev/null +++ b/content/Math4201/Math4201_L16.md @@ -0,0 +1,154 @@ +# Math4201 Lecture 16 (Topology I) + +## Continuous maps + +The following maps are continuous: + +$$ +F_+:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x+y +$$ + +$$ +F_-:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x-y +$$ + +$$ +F_\times:\mathbb{R}\times \mathbb{R}\to \mathbb{R}, (x,y)\to x\times y +$$ + +$$ +F_\div:\mathbb{R}\times (\mathbb{R}\setminus \{0\})\to \mathbb{R}, (x,y)\to \frac{x}{y} +$$ + +### Composition of continuous functions is continuous + +Let $f,g:X\to \mathbb{R}$ be continuous functions. $X$ is topological space. + +Then the following functions are continuous: + +$$ +H:X\to \mathbb{R}\times \mathbb{R}, x\to (f(x),g(x)) +$$ + +Since the composition of continuous functions is continuous, we have + +$$ +F_+\circ H:X\to \mathbb{R}, x\to f(x)+g(x) +$$ + +$$ +F_-\circ H:X\to \mathbb{R}, x\to f(x)-g(x) +$$ + +$$ +F_\times\circ H:X\to \mathbb{R}, x\to f(x)\times g(x) +$$ + +are all continuous. + +More over, if $g(x)\neq 0$ for all $x\in X$, then + +$$ +F_\div\circ H:X\to \mathbb{R}, x\to \frac{f(x)}{g(x)} +$$ + +is continuous following the similar argument. + +### Defining metric for functions + +#### Definition of bounded metric space + +A metric space $(Y,d)$ is **bounded** if there is $M\in\mathbb{R}^{\geq 0}$ such that + +$$ +\forall y,y'\in Y, d(y,y') +Example of bounded metric space + +If $(Y,d)$ is a bounded metric space, let $M$ be a positive constant, then $\overline{d}=\min\{M,d\}$ is a bounded metric space. + +In fact, the metric topology by $d$ and $\overline{d}$ are the same. (proved in homeworks) + + + +Let $X$ be a topological space. and $(Y,d)$ be a **bounded** metric space. + +$$ +\operatorname{Map}(X,Y)\coloneq \{f:X\to Y|f \text{ is a map}\} +$$ + +Define $\rho:\operatorname{Map}(X,Y)\times \operatorname{Map}(X,Y)\to \mathbb{R}$ by + +$$ +\rho(f,g)=\sup_{x\in X} d(f(x),g(x)) +$$ + +#### Lemma space of map with metric defined is a metric space + +$(\operatorname{Map}(X,Y),\rho)$ is a metric space. + +
+Proof + +Proof is similar to showing that the square metric is a metric on $\mathbb{R}^n$. + +$\rho(f,g)=0\implies \sup_{x\in X}(d(f(x),g(x)))=0$ + +Since $d(f(x),g(x))\geq 0$, this implies that $d(f(x),g(x))=0$ for all $x\in X$. + +The triangle inequality of being metric for $\rho$ follows from the similar properties for $d$. + +
+ +#### Lemma continuous maps form a closed subset of the space of maps + +Let $(\operatorname{Map}(X,Y),\rho)$ be a metric space defined before. + +and + +$$ +Z=\{f:X\to Y|f \text{ is a continuous map}\} +$$ + +Then $Z$ is a closed subset of $(\operatorname{Map}(X,Y),\rho)$. + +
+Proof + +We need to show that $\overline{Z}=Z$. + +Since $\operatorname{Map}(X,Y)$ is a metric space, this is equivalent to showing that: $f_n:X\to Y\in Z$ continuous, + +Which is to prove the uniform convergence, + +$$ +f_n \to f \in \operatorname{Map}(X,Y) +$$ + +Then we want to show that $f$ is continuous. + +Let $B_r(y)$ be an arbitrary ball in $Y$, it suffices to show that $f^{-1}(B_r(y))$ is open in $X$. + +Take $N$ to be large enough such that for $n\geq N$, we have + +$$ +\rho(f_n(x), f(x)) < \frac{r}{3} +$$ + +In particular, this holds for $n=N$. So we have + +$$ +d(f_N(x), f(x)) < \frac{r}{3},\forall x\in X +$$ + +Take $x_0\in f^{-1}(B_r(y))$, we'd like to show that there is an open ball around $x_0$ in $f^{-1}(B_r(y))$. + +Since $f_N$ is continuous, $f^{-1}_N(B_{\frac{r}{3}}(y))$ is open in $X$. + +$d(f(x_0), f(x_0))<\frac{r}{3}$ + +continue the proof in bonus video + +
\ No newline at end of file diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js index 72ed2a9..bf60a58 100644 --- a/content/Math4201/_meta.js +++ b/content/Math4201/_meta.js @@ -18,4 +18,5 @@ export default { Math4201_L13: "Topology I (Lecture 13)", Math4201_L14: "Topology I (Lecture 14)", Math4201_L15: "Topology I (Lecture 15)", + Math4201_L16: "Topology I (Lecture 16)", }