updates
This commit is contained in:
@@ -81,7 +81,8 @@ $$
|
||||
|z_1+z_2|\leq |z_1|+|z_2|
|
||||
$$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Geometrically, the triangle inequality states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side.
|
||||
|
||||
@@ -97,6 +98,8 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
</details>
|
||||
|
||||
Suppose $2(|z_1||z_2|-|z_1z_2|)=0$, and $\overline{z_1}z_2$ is a non-negative real number $c$, then $|z_1||z_2|=|z_1z_2|$...
|
||||
|
||||
> What is the use of this?
|
||||
@@ -113,7 +116,8 @@ $$
|
||||
|
||||
The sum of the squares of the lengths of the diagonals of a parallelogram equals the sum of the squares of the lengths of the sides.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $z_1,z_2$ be two complex numbers representing the two sides of the parallelogram, then the sum of the squares of the lengths of the diagonals of the parallelogram is $|z_1-z_2|^2+|z_1+z_2|^2$, and the sum of the squares of the lengths of the sides is $2|z_1|^2+2|z_2|^2$.
|
||||
|
||||
@@ -125,7 +129,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Definition 1.9
|
||||
|
||||
@@ -143,12 +147,15 @@ $$
|
||||
z^n=r^n\text{cis}(n\theta)
|
||||
$$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
For $n=0$, $z^0=1=1\text{cis}(0)$.
|
||||
|
||||
For $n=-1$, $z^{-1}=\frac{1}{z}=\frac{1}{r}\text{cis}(-\theta)=\frac{1}{r}(cos(-\theta)+i\sin(-\theta))$.
|
||||
|
||||
</details>
|
||||
|
||||
Application:
|
||||
|
||||
$$
|
||||
|
||||
@@ -26,21 +26,27 @@ $$
|
||||
\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz
|
||||
$$
|
||||
|
||||
> $$
|
||||
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases}
|
||||
2\pi i, & n=-1 \\
|
||||
0, & n\neq -1
|
||||
\end{cases}$$
|
||||
> Proof:
|
||||
> $\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
|
||||
> $$\begin{aligned}
|
||||
<details>
|
||||
<summary>Additional Proof</summary>
|
||||
|
||||
$$
|
||||
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} 2\pi i, & n=-1 \\0, & n\neq -1\end{cases}
|
||||
$$
|
||||
|
||||
Proof:
|
||||
|
||||
$\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
|
||||
$$
|
||||
\begin{aligned}
|
||||
\int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\
|
||||
&= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\
|
||||
&= \begin{cases}
|
||||
2\pi i, & n=-1 \\
|
||||
\int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1
|
||||
\end{cases}
|
||||
\end{aligned}$$
|
||||
\end{aligned}
|
||||
$$
|
||||
</details>
|
||||
|
||||
So,
|
||||
|
||||
|
||||
@@ -44,7 +44,8 @@ $$
|
||||
|
||||
> Looks like the chain rule.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We want to show that
|
||||
|
||||
@@ -87,7 +88,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Definition 2.12 (Conformal function)
|
||||
|
||||
@@ -111,7 +112,8 @@ Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial z}(z_0)$,
|
||||
|
||||
Let $\gamma(t_0)=z_0$. Then $(f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$f=u+iv$, $u,v$ are real differentiable.
|
||||
|
||||
@@ -144,7 +146,7 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem of differentiability
|
||||
|
||||
@@ -152,7 +154,8 @@ Let $f:G\to \mathbb{C}$ be a function defined on an open set $G\subset \mathbb{C
|
||||
|
||||
Then, $f$ is conformal at every point $z_0\in G$ if and only if $f$ is holomorphic at $z_0$ and $f'(z_0)\neq 0$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We prove the equivalence in two parts.
|
||||
|
||||
@@ -193,7 +196,7 @@ $$
|
||||
$$
|
||||
for any differentiable curve $\gamma$ through $z_0$, then the effect of $f$ near $z_0$ is exactly given by multiplication by $f'(z_0)$. Since multiplication by a nonzero complex number is a similarity transformation, $f$ is conformal at $z_0$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
### Harmonic function
|
||||
|
||||
@@ -211,7 +214,8 @@ $$
|
||||
|
||||
Let $f=u+iv$ be holomorphic function on domain $\Omega\subset \mathbb{C}$. Then $u$ and $v$ are harmonic functions on $\Omega$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$$
|
||||
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0.
|
||||
@@ -229,7 +233,7 @@ $$
|
||||
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0.
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
If $v$ is such that $f=u+iv$ is holomorphic on $\Omega$, then $v$ is called harmonic conjugate of $u$ on $\Omega$.
|
||||
|
||||
|
||||
@@ -14,7 +14,7 @@ Df(x+iy)=\begin{pmatrix}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
So
|
||||
So,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@@ -53,7 +53,6 @@ $$
|
||||
|
||||
## Chapter 3: Linear fractional Transformations
|
||||
|
||||
|
||||
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
|
||||
|
||||
The linear fractional transformation is defined as
|
||||
@@ -185,7 +184,8 @@ So the kernel of $F$ is the set of matrices that represent the identity transfor
|
||||
|
||||
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Know that $\phi_0\circ\phi(z)=z$,
|
||||
|
||||
@@ -197,13 +197,14 @@ $\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\in
|
||||
|
||||
So, $\phi$ is conformal.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Proposition 3.4 of Fixed points
|
||||
|
||||
Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $\phi(z)=\frac{az+b}{cz+d}$.
|
||||
|
||||
@@ -221,7 +222,7 @@ Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
|
||||
|
||||
So, $\phi$ has 1 or 2 fixed points.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Proposition 3.5 of triple transitivity
|
||||
|
||||
|
||||
@@ -36,7 +36,8 @@ when $\alpha=0$, it is a line.
|
||||
|
||||
when $\alpha\neq 0$, it is a circle.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $w=u+iv=\frac{1}{z}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$.
|
||||
|
||||
@@ -48,7 +49,7 @@ $$
|
||||
|
||||
Which is in the form of circle equation.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
## Chapter 4 Elementary functions
|
||||
|
||||
@@ -83,7 +84,8 @@ $$
|
||||
|
||||
$e^z$ is holomorphic on $\mathbb{C}$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@@ -93,19 +95,20 @@ $$
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem 4.4 $e^z$ is periodic
|
||||
|
||||
$e^z$ is periodic with period $2\pi i$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
$$
|
||||
e^{z+2\pi i}=e^z e^{2\pi i}=e^z\cdot 1=e^z
|
||||
$$
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem 4.5 $e^z$ as a map
|
||||
|
||||
@@ -185,13 +188,14 @@ A branch of $\log(z)$ in $G$ is a continuous function $\beta$, such that $e^{\be
|
||||
|
||||
Note: $G$ has a branch of $\arg(z)$ if and only if it has a branch of $\log(z)$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose there exists $\alpha(z)$ such that $\forall z\in G$, $\alpha(z)\in G$, then $l(z)=\ln|z|+i\alpha(z)$ is a branch of $\log(z)$.
|
||||
|
||||
Suppose there exists $l(z)$ such that $\forall z\in G$, $l(z)\in G$, then $\alpha(z)=Im(z)$ is a branch of $\arg(z)$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(z)$ exists.
|
||||
|
||||
@@ -222,7 +226,8 @@ for some $k\in\mathbb{Z}$.
|
||||
|
||||
$\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof (continue on next lecture)</summary>
|
||||
|
||||
Method 1: Use polar coordinates. (See in homework)
|
||||
|
||||
@@ -238,3 +243,4 @@ $$
|
||||
$$
|
||||
|
||||
Continue next time.
|
||||
</details>
|
||||
@@ -26,7 +26,8 @@ A branch of logarithm is a continuous function $f$ on a domain $D$ such that $e^
|
||||
|
||||
$\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
We proved that $\frac{\partial}{\partial\overline{z}}e^{z}=0$ on $\mathbb{C}\setminus\{0\}$.
|
||||
|
||||
@@ -36,7 +37,7 @@ Since $\frac{d}{dz}e^{z}=e^{z}$, we know that $e^{z}$ is conformal, so any branc
|
||||
|
||||
Since $\exp(\log(z))=z$, we know that $\log(z)$ is the inverse of $\exp(z)$, so $\frac{d}{dz}\log(z)=\frac{1}{e^{\log(z)}}=\frac{1}{z}$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
We call $\frac{f'}{f}$ the logarithmic derivative of $f$.
|
||||
|
||||
@@ -78,7 +79,8 @@ If $|c|<1$, then $\lim_{N\to\infty}\sum_{n=0}^{N}c^n=\frac{1}{1-c}$.
|
||||
|
||||
otherwise, the series diverges.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
The geometric series converges if $\frac{c^{N+1}}{1-c}$ converges.
|
||||
|
||||
@@ -90,7 +92,7 @@ If $|c|<1$, then $\lim_{N\to\infty}c^{N+1}=0$, so $\lim_{N\to\infty}(1-c)(1+c+c^
|
||||
|
||||
If $|c|\geq 1$, then $c^{N+1}$ does not converge to 0, so the series diverges.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Theorem 5.4 (Triangle Inequality for Series)
|
||||
|
||||
@@ -146,7 +148,8 @@ For every power series, there exists a radius of convergence $r$ such that the s
|
||||
|
||||
And it diverges pointwise outside $B_r(z_0)$.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Without loss of generality, we can assume that $z_0=0$.
|
||||
|
||||
@@ -166,7 +169,7 @@ So the series converges absolutely and uniformly on $\overline{B_r(0)}$.
|
||||
|
||||
If $|z| > r$, then $|c_n z^n|$ does not tend to zero, and the series diverges.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
We denote this $r$ captialized by te radius of convergence
|
||||
|
||||
|
||||
@@ -67,7 +67,8 @@ $$
|
||||
\frac{1}{R} = \limsup_{n\to\infty} |a_n|^{1/n}
|
||||
$$
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Suppose $(b_n)^{\infty}_{n=0}$ is a sequence of real numbers such that $\lim_{n\to\infty} b_n$ may nor may not exists by $(-1)^n(1-\frac{1}{n})$.
|
||||
|
||||
@@ -111,7 +112,7 @@ So $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ does not converge at $z$ if $|z|> \frac
|
||||
|
||||
So $R=\frac{1}{\rho}$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
_What if $|z-z_0|=R$?_
|
||||
|
||||
@@ -135,7 +136,8 @@ Suppose $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ has a positive radius of convergen
|
||||
|
||||
> Here below is the proof on book, which will be covered in next lecture.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Without loss of generality, assume $z_0=0$. Let $R$ be the radius of convergence for the two power series: $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n a_n z ^{n-1}$. The two power series have the same radius of convergence $|R|$.
|
||||
|
||||
@@ -179,4 +181,4 @@ So $\left|\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)\right|\leq M|z-z_1|$ for $|z|<\rho$.
|
||||
|
||||
So $\lim_{z\to z_1}\frac{f(z)-f(z_1)}{z-z_1}=g(z_1)$.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
Reference in New Issue
Block a user