This commit is contained in:
Trance-0
2025-09-30 19:57:27 -05:00
parent afd5a3bf4c
commit b248bb1e44
8 changed files with 121 additions and 47 deletions

View File

@@ -26,21 +26,27 @@ $$
\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz
$$
> $$
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases}
2\pi i, & n=-1 \\
0, & n\neq -1
\end{cases}$$
> Proof:
> $\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
> $$\begin{aligned}
<details>
<summary>Additional Proof</summary>
$$
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} 2\pi i, & n=-1 \\0, & n\neq -1\end{cases}
$$
Proof:
$\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
$$
\begin{aligned}
\int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\
&= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\
&= \begin{cases}
2\pi i, & n=-1 \\
\int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1
\end{cases}
\end{aligned}$$
\end{aligned}
$$
</details>
So,