updates
This commit is contained in:
@@ -26,21 +26,27 @@ $$
|
||||
\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz
|
||||
$$
|
||||
|
||||
> $$
|
||||
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases}
|
||||
2\pi i, & n=-1 \\
|
||||
0, & n\neq -1
|
||||
\end{cases}$$
|
||||
> Proof:
|
||||
> $\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
|
||||
> $$\begin{aligned}
|
||||
<details>
|
||||
<summary>Additional Proof</summary>
|
||||
|
||||
$$
|
||||
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} 2\pi i, & n=-1 \\0, & n\neq -1\end{cases}
|
||||
$$
|
||||
|
||||
Proof:
|
||||
|
||||
$\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
|
||||
$$
|
||||
\begin{aligned}
|
||||
\int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\
|
||||
&= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\
|
||||
&= \begin{cases}
|
||||
2\pi i, & n=-1 \\
|
||||
\int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1
|
||||
\end{cases}
|
||||
\end{aligned}$$
|
||||
\end{aligned}
|
||||
$$
|
||||
</details>
|
||||
|
||||
So,
|
||||
|
||||
|
||||
Reference in New Issue
Block a user