updates
This commit is contained in:
@@ -14,7 +14,7 @@ Df(x+iy)=\begin{pmatrix}
|
||||
\end{pmatrix}
|
||||
$$
|
||||
|
||||
So
|
||||
So,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
@@ -53,7 +53,6 @@ $$
|
||||
|
||||
## Chapter 3: Linear fractional Transformations
|
||||
|
||||
|
||||
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
|
||||
|
||||
The linear fractional transformation is defined as
|
||||
@@ -185,7 +184,8 @@ So the kernel of $F$ is the set of matrices that represent the identity transfor
|
||||
|
||||
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Know that $\phi_0\circ\phi(z)=z$,
|
||||
|
||||
@@ -197,13 +197,14 @@ $\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\in
|
||||
|
||||
So, $\phi$ is conformal.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Proposition 3.4 of Fixed points
|
||||
|
||||
Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points.
|
||||
|
||||
Proof:
|
||||
<details>
|
||||
<summary>Proof</summary>
|
||||
|
||||
Let $\phi(z)=\frac{az+b}{cz+d}$.
|
||||
|
||||
@@ -221,7 +222,7 @@ Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
|
||||
|
||||
So, $\phi$ has 1 or 2 fixed points.
|
||||
|
||||
QED
|
||||
</details>
|
||||
|
||||
#### Proposition 3.5 of triple transitivity
|
||||
|
||||
|
||||
Reference in New Issue
Block a user