This commit is contained in:
Trance-0
2025-09-30 19:57:27 -05:00
parent afd5a3bf4c
commit b248bb1e44
8 changed files with 121 additions and 47 deletions

View File

@@ -14,7 +14,7 @@ Df(x+iy)=\begin{pmatrix}
\end{pmatrix}
$$
So
So,
$$
\begin{aligned}
@@ -53,7 +53,6 @@ $$
## Chapter 3: Linear fractional Transformations
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
The linear fractional transformation is defined as
@@ -185,7 +184,8 @@ So the kernel of $F$ is the set of matrices that represent the identity transfor
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal.
Proof:
<details>
<summary>Proof</summary>
Know that $\phi_0\circ\phi(z)=z$,
@@ -197,13 +197,14 @@ $\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\in
So, $\phi$ is conformal.
QED
</details>
#### Proposition 3.4 of Fixed points
Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points.
Proof:
<details>
<summary>Proof</summary>
Let $\phi(z)=\frac{az+b}{cz+d}$.
@@ -221,7 +222,7 @@ Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
So, $\phi$ has 1 or 2 fixed points.
QED
</details>
#### Proposition 3.5 of triple transitivity