This commit is contained in:
Trance-0
2025-09-30 19:57:27 -05:00
parent afd5a3bf4c
commit b248bb1e44
8 changed files with 121 additions and 47 deletions

View File

@@ -36,7 +36,8 @@ when $\alpha=0$, it is a line.
when $\alpha\neq 0$, it is a circle.
Proof:
<details>
<summary>Proof</summary>
Let $w=u+iv=\frac{1}{z}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$.
@@ -48,7 +49,7 @@ $$
Which is in the form of circle equation.
QED
</details>
## Chapter 4 Elementary functions
@@ -83,7 +84,8 @@ $$
$e^z$ is holomorphic on $\mathbb{C}$.
Proof:
<details>
<summary>Proof</summary>
$$
\begin{aligned}
@@ -93,19 +95,20 @@ $$
\end{aligned}
$$
QED
</details>
#### Theorem 4.4 $e^z$ is periodic
$e^z$ is periodic with period $2\pi i$.
Proof:
<details>
<summary>Proof</summary>
$$
e^{z+2\pi i}=e^z e^{2\pi i}=e^z\cdot 1=e^z
$$
QED
</details>
#### Theorem 4.5 $e^z$ as a map
@@ -185,13 +188,14 @@ A branch of $\log(z)$ in $G$ is a continuous function $\beta$, such that $e^{\be
Note: $G$ has a branch of $\arg(z)$ if and only if it has a branch of $\log(z)$.
Proof:
<details>
<summary>Proof</summary>
Suppose there exists $\alpha(z)$ such that $\forall z\in G$, $\alpha(z)\in G$, then $l(z)=\ln|z|+i\alpha(z)$ is a branch of $\log(z)$.
Suppose there exists $l(z)$ such that $\forall z\in G$, $l(z)\in G$, then $\alpha(z)=Im(z)$ is a branch of $\arg(z)$.
QED
</details>
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(z)$ exists.
@@ -222,7 +226,8 @@ for some $k\in\mathbb{Z}$.
$\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
Proof:
<details>
<summary>Proof (continue on next lecture)</summary>
Method 1: Use polar coordinates. (See in homework)
@@ -238,3 +243,4 @@ $$
$$
Continue next time.
</details>