This commit is contained in:
Trance-0
2025-09-30 19:57:27 -05:00
parent afd5a3bf4c
commit b248bb1e44
8 changed files with 121 additions and 47 deletions

View File

@@ -87,7 +87,52 @@ $$
P_s(z)=\{v\in \mathbb{C}^d: |v_k-z_k|<s, k=1,2,\cdots,d\}
$$
If $z\in U$, we cha choose $s$ small enough such that $P_s(z)\subset U$.
If $z\in U$, we cha choose $s$ small enough such that $\overline{P_s(z)}\subset U$ so that we can claim that $F(z)=(\pi s^2)^{-d}\int_{P_s(z)}F(v)d\mu(v)$ is well-defined.
If $d=1$. Then by Taylor series at $v=z$, since $F$ is analytic in $U$ we have
$$
F(v)=F(z)+\sum_{k=1}^{\infty}a_n(v-z)^n
$$
Since the series converges uniformly to $F$ on the compact set $\overline{P_s(z)}$, we can interchange the integral and the sum.
Using polar coordinates with origin at $z$, $(v-z)^n=r^n e^{in\theta}$ where $r=|v-z|, \theta=\arg(v-z)$.
For $n\geq 1$, the integral over $P_s(z)$ (open disk) is zero (by Cauchy's theorem).
So,
$$
\begin{aligned}
F(z)&=(\pi s^2)^{-1}\int_{P_s(z)}F(z)+\sum_{k=1}^{\infty}a_n(v-z)^n d\mu(v)\\
&=(\pi s^2)^{-1}F(z)+(\pi s^2)^{-1}\sum_{k=1}^{\infty}a_n\int_{P_s(z)}r^n e^{in\theta} d\mu(v)\\
&=(\pi s^2)^{-1}F(z)
\end{aligned}
$$
For $d>1$, we can use the same argument to show that
Let $\mathbb{I}_{P_s(z)}(v)=\begin{cases}1 & v\in P_s(z) \\0 & v\notin P_s(z)\end{cases}$ be the indicator function of $P_s(z)$.
$$
\begin{aligned}
F(z)&=(\pi s^2)^{-d}\int_{U}\mathbb{I}_{P_s(z)}(v)\frac{1}{\alpha(v)}F(v)\alpha(v) d\mu(v)\\
&=(\pi s^2)^{-d}\langle \mathbb{I}_{P_s(z)}\frac{1}{\alpha},F\rangle_{L^2(U,\alpha)}
\end{aligned}
$$
By definition of inner product.
So $\|F(z)\|^2\leq (\pi s^2)^{-2d}\|\mathbb{I}_{P_s(z)}\frac{1}{\alpha}\|^2_{L^2(U,\alpha)} \|F\|^2_{L^2(U,\alpha)}$.
All the terms are bounded and finite.
For part 2, we need to show that $\forall z\in U$, we can find a neighborhood $V$ of $z$ and a constant $d_z$ such that
$$
|F(z)|^2\leq d_z \|F\|^2_{L^2(U,\alpha)}
$$
</details>

View File

@@ -81,7 +81,8 @@ $$
|z_1+z_2|\leq |z_1|+|z_2|
$$
Proof:
<details>
<summary>Proof</summary>
Geometrically, the triangle inequality states that the sum of the lengths of any two sides of a triangle is greater than the length of the third side.
@@ -97,6 +98,8 @@ $$
\end{aligned}
$$
</details>
Suppose $2(|z_1||z_2|-|z_1z_2|)=0$, and $\overline{z_1}z_2$ is a non-negative real number $c$, then $|z_1||z_2|=|z_1z_2|$...
> What is the use of this?
@@ -113,7 +116,8 @@ $$
The sum of the squares of the lengths of the diagonals of a parallelogram equals the sum of the squares of the lengths of the sides.
Proof:
<details>
<summary>Proof</summary>
Let $z_1,z_2$ be two complex numbers representing the two sides of the parallelogram, then the sum of the squares of the lengths of the diagonals of the parallelogram is $|z_1-z_2|^2+|z_1+z_2|^2$, and the sum of the squares of the lengths of the sides is $2|z_1|^2+2|z_2|^2$.
@@ -125,7 +129,7 @@ $$
\end{aligned}
$$
QED
</details>
#### Definition 1.9
@@ -143,12 +147,15 @@ $$
z^n=r^n\text{cis}(n\theta)
$$
Proof:
<details>
<summary>Proof</summary>
For $n=0$, $z^0=1=1\text{cis}(0)$.
For $n=-1$, $z^{-1}=\frac{1}{z}=\frac{1}{r}\text{cis}(-\theta)=\frac{1}{r}(cos(-\theta)+i\sin(-\theta))$.
</details>
Application:
$$

View File

@@ -26,21 +26,27 @@ $$
\int_{C(z_0,r)} f(z) dz = \sum_{n=-\infty}^{\infty} c_n \int_{C(z_0,r)} (z-z_0)^n dz
$$
> $$
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases}
2\pi i, & n=-1 \\
0, & n\neq -1
\end{cases}$$
> Proof:
> $\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
> $$\begin{aligned}
<details>
<summary>Additional Proof</summary>
$$
\int_{C(z_0,r)} (z-z_0)^n dz = \begin{cases} 2\pi i, & n=-1 \\0, & n\neq -1\end{cases}
$$
Proof:
$\gamma(t)=z_0+re^{it}, t\in[0,2\pi]$
$$
\begin{aligned}
\int_{C(z_0,r)} (z-z_0)^n dz &= \int_0^{2\pi} (z_0+re^{it}-z_0)^n ire^{it} dt \\
&= ir^{n+1} \int_0^{2\pi} e^{i(n+1)t} dt \\
&= \begin{cases}
2\pi i, & n=-1 \\
\int_0^{2\pi} e^{i(n+1)t} dt = \frac{1}{i(n+1)}e^{i(n+1)t}\Big|_0^{2\pi} = 0, & n\neq -1
\end{cases}
\end{aligned}$$
\end{aligned}
$$
</details>
So,

View File

@@ -44,7 +44,8 @@ $$
> Looks like the chain rule.
Proof:
<details>
<summary>Proof</summary>
We want to show that
@@ -87,7 +88,7 @@ $$
\end{aligned}
$$
QED
</details>
#### Definition 2.12 (Conformal function)
@@ -111,7 +112,8 @@ Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial z}(z_0)$,
Let $\gamma(t_0)=z_0$. Then $(f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}$.
Proof:
<details>
<summary>Proof</summary>
$f=u+iv$, $u,v$ are real differentiable.
@@ -144,7 +146,7 @@ $$
\end{aligned}
$$
QED
</details>
#### Theorem of differentiability
@@ -152,7 +154,8 @@ Let $f:G\to \mathbb{C}$ be a function defined on an open set $G\subset \mathbb{C
Then, $f$ is conformal at every point $z_0\in G$ if and only if $f$ is holomorphic at $z_0$ and $f'(z_0)\neq 0$.
Proof:
<details>
<summary>Proof</summary>
We prove the equivalence in two parts.
@@ -193,7 +196,7 @@ $$
$$
for any differentiable curve $\gamma$ through $z_0$, then the effect of $f$ near $z_0$ is exactly given by multiplication by $f'(z_0)$. Since multiplication by a nonzero complex number is a similarity transformation, $f$ is conformal at $z_0$.
QED
</details>
### Harmonic function
@@ -211,7 +214,8 @@ $$
Let $f=u+iv$ be holomorphic function on domain $\Omega\subset \mathbb{C}$. Then $u$ and $v$ are harmonic functions on $\Omega$.
Proof:
<details>
<summary>Proof</summary>
$$
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0.
@@ -229,7 +233,7 @@ $$
\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0.
$$
QED
</details>
If $v$ is such that $f=u+iv$ is holomorphic on $\Omega$, then $v$ is called harmonic conjugate of $u$ on $\Omega$.

View File

@@ -14,7 +14,7 @@ Df(x+iy)=\begin{pmatrix}
\end{pmatrix}
$$
So
So,
$$
\begin{aligned}
@@ -53,7 +53,6 @@ $$
## Chapter 3: Linear fractional Transformations
Let $a,b,c,d$ be complex numbers. such that $ad-bc\neq 0$.
The linear fractional transformation is defined as
@@ -185,7 +184,8 @@ So the kernel of $F$ is the set of matrices that represent the identity transfor
If $\phi$ is a non-constant linear fractional transformation, then $\phi$ is conformal.
Proof:
<details>
<summary>Proof</summary>
Know that $\phi_0\circ\phi(z)=z$,
@@ -197,13 +197,14 @@ $\phi:\mathbb{C}\cup\{\infty\}\to\mathbb{C}\cup\{\infty\}$ which gives $\phi(\in
So, $\phi$ is conformal.
QED
</details>
#### Proposition 3.4 of Fixed points
Any non-constant linear fractional transformation except the identity transformation has 1 or 2 fixed points.
Proof:
<details>
<summary>Proof</summary>
Let $\phi(z)=\frac{az+b}{cz+d}$.
@@ -221,7 +222,7 @@ Such solutions are $z=\frac{-(d-a)\pm\sqrt{(d-a)^2+4bc}}{2c}$.
So, $\phi$ has 1 or 2 fixed points.
QED
</details>
#### Proposition 3.5 of triple transitivity

View File

@@ -36,7 +36,8 @@ when $\alpha=0$, it is a line.
when $\alpha\neq 0$, it is a circle.
Proof:
<details>
<summary>Proof</summary>
Let $w=u+iv=\frac{1}{z}$, so $\frac{1}{w}=\frac{u}{u^2+v^2}-i\frac{v}{u^2+v^2}$.
@@ -48,7 +49,7 @@ $$
Which is in the form of circle equation.
QED
</details>
## Chapter 4 Elementary functions
@@ -83,7 +84,8 @@ $$
$e^z$ is holomorphic on $\mathbb{C}$.
Proof:
<details>
<summary>Proof</summary>
$$
\begin{aligned}
@@ -93,19 +95,20 @@ $$
\end{aligned}
$$
QED
</details>
#### Theorem 4.4 $e^z$ is periodic
$e^z$ is periodic with period $2\pi i$.
Proof:
<details>
<summary>Proof</summary>
$$
e^{z+2\pi i}=e^z e^{2\pi i}=e^z\cdot 1=e^z
$$
QED
</details>
#### Theorem 4.5 $e^z$ as a map
@@ -185,13 +188,14 @@ A branch of $\log(z)$ in $G$ is a continuous function $\beta$, such that $e^{\be
Note: $G$ has a branch of $\arg(z)$ if and only if it has a branch of $\log(z)$.
Proof:
<details>
<summary>Proof</summary>
Suppose there exists $\alpha(z)$ such that $\forall z\in G$, $\alpha(z)\in G$, then $l(z)=\ln|z|+i\alpha(z)$ is a branch of $\log(z)$.
Suppose there exists $l(z)$ such that $\forall z\in G$, $l(z)\in G$, then $\alpha(z)=Im(z)$ is a branch of $\arg(z)$.
QED
</details>
If $G=\mathbb{C}\setminus\{0\}$, then not branch of $\arg(z)$ exists.
@@ -222,7 +226,8 @@ for some $k\in\mathbb{Z}$.
$\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
Proof:
<details>
<summary>Proof (continue on next lecture)</summary>
Method 1: Use polar coordinates. (See in homework)
@@ -238,3 +243,4 @@ $$
$$
Continue next time.
</details>

View File

@@ -26,7 +26,8 @@ A branch of logarithm is a continuous function $f$ on a domain $D$ such that $e^
$\log(z)$ is holomorphic on $\mathbb{C}\setminus\{0\}$.
Proof:
<details>
<summary>Proof</summary>
We proved that $\frac{\partial}{\partial\overline{z}}e^{z}=0$ on $\mathbb{C}\setminus\{0\}$.
@@ -36,7 +37,7 @@ Since $\frac{d}{dz}e^{z}=e^{z}$, we know that $e^{z}$ is conformal, so any branc
Since $\exp(\log(z))=z$, we know that $\log(z)$ is the inverse of $\exp(z)$, so $\frac{d}{dz}\log(z)=\frac{1}{e^{\log(z)}}=\frac{1}{z}$.
QED
</details>
We call $\frac{f'}{f}$ the logarithmic derivative of $f$.
@@ -78,7 +79,8 @@ If $|c|<1$, then $\lim_{N\to\infty}\sum_{n=0}^{N}c^n=\frac{1}{1-c}$.
otherwise, the series diverges.
Proof:
<details>
<summary>Proof</summary>
The geometric series converges if $\frac{c^{N+1}}{1-c}$ converges.
@@ -90,7 +92,7 @@ If $|c|<1$, then $\lim_{N\to\infty}c^{N+1}=0$, so $\lim_{N\to\infty}(1-c)(1+c+c^
If $|c|\geq 1$, then $c^{N+1}$ does not converge to 0, so the series diverges.
QED
</details>
#### Theorem 5.4 (Triangle Inequality for Series)
@@ -146,7 +148,8 @@ For every power series, there exists a radius of convergence $r$ such that the s
And it diverges pointwise outside $B_r(z_0)$.
Proof:
<details>
<summary>Proof</summary>
Without loss of generality, we can assume that $z_0=0$.
@@ -166,7 +169,7 @@ So the series converges absolutely and uniformly on $\overline{B_r(0)}$.
If $|z| > r$, then $|c_n z^n|$ does not tend to zero, and the series diverges.
QED
</details>
We denote this $r$ captialized by te radius of convergence

View File

@@ -67,7 +67,8 @@ $$
\frac{1}{R} = \limsup_{n\to\infty} |a_n|^{1/n}
$$
Proof:
<details>
<summary>Proof</summary>
Suppose $(b_n)^{\infty}_{n=0}$ is a sequence of real numbers such that $\lim_{n\to\infty} b_n$ may nor may not exists by $(-1)^n(1-\frac{1}{n})$.
@@ -111,7 +112,7 @@ So $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ does not converge at $z$ if $|z|> \frac
So $R=\frac{1}{\rho}$.
QED
</details>
_What if $|z-z_0|=R$?_
@@ -135,7 +136,8 @@ Suppose $\sum_{n=0}^{\infty} a_n (z - z_0)^n$ has a positive radius of convergen
> Here below is the proof on book, which will be covered in next lecture.
Proof:
<details>
<summary>Proof</summary>
Without loss of generality, assume $z_0=0$. Let $R$ be the radius of convergence for the two power series: $\sum_{n=0}^{\infty} a_n z^n$ and $\sum_{n=1}^{\infty} n a_n z ^{n-1}$. The two power series have the same radius of convergence $|R|$.
@@ -179,4 +181,4 @@ So $\left|\frac{f(z)-f(z_1)}{z-z_1}-g(z_1)\right|\leq M|z-z_1|$ for $|z|<\rho$.
So $\lim_{z\to z_1}\frac{f(z)-f(z_1)}{z-z_1}=g(z_1)$.
QED
</details>