diff --git a/pages/Math416/Math416_L6.md b/pages/Math416/Math416_L6.md index 3c3ed28..8acda86 100644 --- a/pages/Math416/Math416_L6.md +++ b/pages/Math416/Math416_L6.md @@ -50,7 +50,7 @@ Which is in the form of circle equation. EOP -## Chapter 4 Elements of functions +## Chapter 4 Elementary functions > $e^t=\sum_{n=0}^{\infty}\frac{t^n}{n!}$ diff --git a/pages/Math416/Math416_L7.md b/pages/Math416/Math416_L7.md new file mode 100644 index 0000000..8043d83 --- /dev/null +++ b/pages/Math416/Math416_L7.md @@ -0,0 +1,150 @@ +# Lecture 7 + +## Review + +### Exponential function + +$$ +e^z=e^{x+iy}=e^x(\cos y+i\sin y) +$$ + +### Logarithm + +#### Definition 4.9 Logarithm + +A logarithm of $a$ is any $b$ such that $e^b=a$. + +### Branch of Logarithm + +A branch of logarithm is a continuous function $f$ on a domain $D$ such that $e^{f(z)}=\exp(f(z))=z$ for all $z\in D$. + +## Continue on Chapter 4 Elementary functions + +### Logarithm + +#### Theorem 4.11 + +$\log(\zeta)$ is holomorphic on $\mathbb{C}\setminus\{0\}$. + +Proof: + +We proved that $\frac{\partial}{\partial\overline{z}}e^{\zeta}=0$ on $\mathbb{C}\setminus\{0\}$. + +Then $\frac{d}{dz}e^{\zeta}=\frac{\partial}{\partial x}e^{\zeta}=0$ if we know that $e^{\zeta}$ is holomorphic. + +Since $\frac{d}{dz}e^{\zeta}=e^{\zeta}$, we know that $e^{\zeta}$ is conformal, so any branch of logarithm is also conformal. + +Since $\exp(\log(\zeta))=\zeta$, we know that $\log(\zeta)$ is the inverse of $\exp(\zeta)$, so $\frac{d}{dz}\log(\zeta)=\frac{1}{e^{\log(\zeta)}}=\frac{1}{\zeta}$. + +EOP + +We call $\frac{f'}{f}$ the logarithmic derivative of $f$. + +## Chapter 5. Power series + +If $\sum_{n=0}^{\infty}c_n$ converges, then $\lim_{n\to\infty}c_n=0$ exists. + +### Geometric series + +$$ +\sum_{n=0}^{N}c^n=\frac{1-c^{N+1}}{1-c} +$$ + +If $|c|<1$, then $\lim_{N\to\infty}\sum_{n=0}^{N}c^n=\frac{1}{1-c}$. + +otherwise, the series diverges. + +Proof: + +The geometric series converges if $\frac{c^{N+1}}{1-c}$ converges. + +$$ +(1-c)(1+c+c^2+\cdots+c^N)=1-c^{N+1} +$$ + +If $|c|<1$, then $\lim_{N\to\infty}c^{N+1}=0$, so $\lim_{N\to\infty}(1-c)(1+c+c^2+\cdots+c^N)=1$. + +If $|c|\geq 1$, then $c^{N+1}$ does not converge to 0, so the series diverges. + +EOP + +### Convergence + +#### Definition 5.4 + +$$ +\sum_{n=0}^{\infty}c_n +$$ + +converges absolutely if $\sum_{n=0}^{\infty}|c_n|$ converges. + +Note: _Some other properties of converging series covered in Math4111, bad, very bad._ + +#### Definition 5.6 Convergence of sequence of functions + +A sequence of functions $f_n$ **converges pointwise** to $f$ on a set $G$ if for every $z\in G$, $\forall\epsilon>0$, $\exists N$ such that for all $n\geq N$, $|f_n(z)-f(z)|<\epsilon$. + +(choose $N$ based on $z$) + +A sequence of functions $f_n$ **converges uniformly** to $f$ on a set $G$ if for every $\epsilon>0$, there exists a positive integer $N$ such that for all $n\geq N$ and all $z\in G$, $|f_n(z)-f(z)|<\epsilon$. + +(choose $N$ based on $\epsilon$) + +A sequence of functions $f_n$ **converges locally uniformly** to $f$ on a set $G$ if for every $z\in G$, $\forall\epsilon>0$, $\exists r>0$ such that for all $z\in B(z,r)$, $\forall n\geq N$, $|f_n(z)-f(z)|<\epsilon$. + +(choose $N$ based on $z$ and $\epsilon$) + +A sequence of functions $f_n$ **converges uniformly on compacta** to $f$ on a set $G$ if it converges uniformly on every compact subset of $G$. + +#### Theorem 5.? + +If the subsequence of a converging sequence of functions converges (a), then the original sequence converges (a). + +You can replace (a) with locally uniform convergence, uniform convergence, pointwise convergence, etc. + +#### UNKNOWN + +We defined $a^b=\{e^{b\log a}\}$ if $b$ is real, then $a^b$ is unique, if $b$ is complex, then $a^b=e^{b\log a}\{e^{2k\pi ik b}\},k\in\mathbb{Z}$. + +### Power series + +#### Definition 5.8 + +A power series is a series of the form $\sum_{n=0}^{\infty}c_n(\zeta-\zeta_0)^n$. + +#### Theorem 5.10 + +For every power series, there exists a radius of convergence $R$ such that the series converges absolutely and locally uniformly on $B(\zeta_0,R)$. + +And it diverges pointwise outside $B(\zeta_0,R)$. + +Proof: + +Without loss of generality, we can assume that $\zeta_0=0$. + +Suppose that the power series is $\sum_{n=0}^{\infty}c_n (\zeta)^n$ converges at $\zeta=re^{i\theta}$. + +We want to show that the series converges absolutely and uniformly on $\overline{B(0,r)}$ (_closed disk, I prefer to use this notation, although they use $\mathbb{D}$ for the disk (open disk)_). + +We know $c_n r^ne^{in\theta}\to 0$ as $n\to\infty$. + +So there exists $M\geq|c_n r^ne^{in\theta}|$ for all $n\in\mathbb{N}$. + +So $\forall \zeta\in\overline{B(0,r)}$, $|c_n\zeta^n|\leq |c_n|e^n\leq M(\frac{e}{r})^n$. + +So $\sum_{n=0}^{\infty}|c_n\zeta^n|$ converges absolutely. + +So the series converges absolutely and uniformly on $\overline{B(0,r)}$. + +_Some steps are omitted._ + +EOP + +There are few cases for the convergence of the power series. + +Let $E=\{\zeta\in\mathbb{C}: \sum_{n=0}^{\infty}c_n(\zeta-\zeta_0)^n\text{ converges}\}$. + +1. It cloud only converge at $\zeta=0$. +2. It could converge everywhere. + +Continue next time. diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index e487ab6..01d8a8c 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -9,4 +9,5 @@ export default { Math416_L4: "Complex Variables (Lecture 4)", Math416_L5: "Complex Variables (Lecture 5)", Math416_L6: "Complex Variables (Lecture 6)", + Math416_L7: "Complex Variables (Lecture 7)", }