From b6b80f619ae1ab55623afe01a818ce8d6ece1737 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Mon, 9 Feb 2026 12:20:26 -0600 Subject: [PATCH] updates --- content/Math4202/Math4202_L12.md | 119 +++++++++++++++++++++++++++++++ content/Math4202/_meta.js | 1 + 2 files changed, 120 insertions(+) create mode 100644 content/Math4202/Math4202_L12.md diff --git a/content/Math4202/Math4202_L12.md b/content/Math4202/Math4202_L12.md new file mode 100644 index 0000000..da09c26 --- /dev/null +++ b/content/Math4202/Math4202_L12.md @@ -0,0 +1,119 @@ +# Math4201 Topology II (Lecture 12) + +## Algebraic topology + +### Fundamental group + +Recall from last lecture, the $(\Pi_1(X,x_0),*)$ is a group, and for any two points $x_0,x_1\in X$, the group $(\Pi_1(X,x_0),*)$ is isomorphic to $(\Pi_1(X,x_1),*)$ if $x_0,x_1$ is path connected. + +> [!TIP] +> +> How does the $\hat{\alpha}$ (isomorphism between $(\Pi_1(X,x_0),*)$ and $(\Pi_1(X,x_1),*)$) depend on the choice of $\alpha$ (path) we choose? + +#### Definition of simply connected + +A space $X$ is simply connected if + +- $X$ is [path-connected](https://notenextra.trance-0.com/Math4201/Math4201_L23/#definition-of-path-connected-space) ($\forall x_0,x_1\in X$, there exists a continuous function $\alpha:[0,1]\to X$ such that $\alpha(0)=x_0$ and $\alpha(1)=x_1$) +- $\Pi_1(X,x_0)$ is the trivial group for some $x_0\in X$ + +
+Example of simply connected space + +Intervals are simply connected. + +--- + +Any star-shaped is simply connected. + +--- + +$S^1$ is not simply connected, but $n\geq 2$, then $S^n$ is simply connected. + +
+ +#### Lemma for simply connected space + +In a simply connected space $X$, and two paths having the same initial and final points are path homotopic. + +
+Proof + +Let $f,g$ be paths having the same initial and final points, then $f(0)=g(0)=x_0$ and $f(1)=g(1)=x_1$. + +Therefore $[f]*[\bar{g}]\simeq_p [e_{x_0}]$ (by simply connected space assumption). + +Then + +$$ +\begin{aligned} +[f]*[\bar{g}]&\simeq_p [e_{x_0}]\\ +([f]*[\bar{g}])*[g]&\simeq_p [e_{x_0}]*[g]\\ +[f]*([\bar{g}]*[g])&\simeq_p [e_{x_0}]*[g]\\ +[f]*[e_{x_1}]&\simeq_p [e_{x_0}]*[g]\\ +[f]&\simeq_p [g] +\end{aligned} +$$ + +
+ +#### Definition of group homomorphism induced by continuous map + +Let $h:(X,x_0)\to (Y,y_0)$ be a continuous map, define $h_*:\Pi_1(X,x_0)\to \Pi_1(Y,y_0)$ where $h(x_0)=y_0$. by $h_*([f])=[h\circ f]$. + +$h_*$ is called the group homomorphism induced by $h$ relative to $x_0$. + +
+Check the homomorphism property + +$$ +\begin{aligned} +h_*([f]*[g])&=h_*([f*g])\\ +&=[h_*[f*g]]\\ +&=[h_*[f]*h_*[g]]\\ +&=[h_*[f]]*[h_*[g]]\\ +&=h_*([f])*h_*([g]) +\end{aligned} +$$ + +
+ +#### Theorem composite of group homomorphism + +If $h:(X,x_0)\to (Y,y_0)$ and $k:(Y,y_0)\to (Z,z_0)$ are continuous maps, then $k_* \circ h_*:\Pi_1(X,x_0)\to \Pi_1(Z,z_0)$ where $h_*:\Pi_1(X,x_0)\to \Pi_1(Y,y_0)$, $k_*:\Pi_1(Y,y_0)\to \Pi_1(Z,z_0)$,is a group homomorphism. + +
+Proof + +Let $f$ be a loop based at $x_0$. + +$$ +\begin{aligned} +k_*(h_*([f]))&=k_*([h\circ f])\\ +&=[k\circ h\circ f]\\ +&=[(k\circ h)\circ f]\\ +&=(k\circ h)_*([f])\\ +\end{aligned} +$$ + +
+ +#### Corollary of composite of group homomorphism + +Let $\operatorname{id}:(X,x_0)\to (X,x_0)$ be the identity map. This induces $(\operatorname{id})_*:\Pi_1(X,x_0)\to \Pi_1(X,x_0)$. + +If $h$ is a homeomorphism with the inverse $k$, with + +$$ +k_*\circ h_*=(k\circ h)_*=(\operatorname{id})_*=I=(\operatorname{id})_*=(h\circ k)_* +$$ + +This induced $h_*: \Pi_1(X,x_0)\to \Pi_1(Y,y_0)$ is an isomorphism. + +#### Corollary for homotopy and group homomorphism + +If $h,k:(X,x_0)\to (Y,y_0)$ are homotopic maps form $X$ to $Y$ such that the homotopy $H_t(x_0)=y_0,\forall t\in I$, then $h_*=k_*$. + +$$ +h_*([f])=[h\circ f]\simeq_p[k\circ h]=k_*([f]) +$$ diff --git a/content/Math4202/_meta.js b/content/Math4202/_meta.js index 9666a11..5ed0989 100644 --- a/content/Math4202/_meta.js +++ b/content/Math4202/_meta.js @@ -14,4 +14,5 @@ export default { Math4202_L9: "Topology II (Lecture 9)", Math4202_L10: "Topology II (Lecture 10)", Math4202_L11: "Topology II (Lecture 11)", + Math4202_L12: "Topology II (Lecture 12)", }