This commit is contained in:
Zheyuan Wu
2025-10-21 12:50:11 -05:00
parent 9f7d99b745
commit b845aca63c
2 changed files with 354 additions and 1 deletions

View File

@@ -148,3 +148,30 @@ $$
y_1 = r + \gamma \min_{i=1,2} Q^{\theta_i'}(s', \pi_{\phi_i}(s')) y_1 = r + \gamma \min_{i=1,2} Q^{\theta_i'}(s', \pi_{\phi_i}(s'))
$$ $$
High-variance estimates provide a noisy gradient.
Techniques in TD3 to reduce the variance:
- Update the policy at a lower frequency than the value network.
- Smoothing the value estimate:
$$
y=r+\gamma \mathbb{E}_{\epsilon}[Q^{\theta'}(s', \pi_{\phi'}(s')+\epsilon)]
$$
Update target:
$$
y=r+\gamma \mathbb{E}_{\epsilon}[Q^{\theta'}(s', \pi_{\phi'}(s')+\epsilon)]
$$
where $\epsilon\sim clip(\mathcal{N}(0, \sigma), -c, c)$
#### Other methods
- Generalizable Episode Memory for Deep Reinforcement Learning
- Distributed Distributional Deep Deterministic Policy Gradient
- Distributional critic
- N-step returns are used to update the critic
- Multiple distributed parallel actors
- Prioritized experience replay
-

View File

@@ -1 +1,327 @@
# CSE5313 Coding and information theory for data science (Lecture 15) # CSE5313 Coding and information theory for data science (Lecture 15)
## Information theory
Transmission, processing, extraction, and utilization of information.
- Information: "Resolution" of uncertainty.
- Question in the 1940's: How to quantify the complexity of information?
- Questions:
- How many bits are required to **describe** an information source?
- How many bits are required to **transmit** an information source?
- How much information does one source **reveal** about another?
- Applications:
- Data Compression.
- Channel Coding.
- Privacy.
- Claude Shannon 1948: Information Entropy.
### Entropy
The "information value" of a message depends on how surprising it is.
- The more unlikely the event, the more informative the message.
The **Shannon information** of an event $E$:
$$
I(E)=-\log_2 \frac{1}{Pr(E)}
$$
Entropy the the expected amount of information in a random trial.
- Rolling a die has more entropy than rolling a coin (6 states vs 2 states).
#### Information entropy
Let $X$ be a random variable with values in some finite set $\mathcal{X}$.
The entropy $H(X)$ of $X$ is defined as:
$$
H(X)=\sum_{x\in \mathcal{X}} \log_2 \frac{1}{Pr(X=x)}=-\mathbb{E}_{x\sim X}[Pr(X=x)\log_2 Pr(X=x)]
$$
Idea: How many bits are required, on average, to describe $X$?
- The more unlikely the event, the more informative the message.
- Use "few" bits for common $x$ (i.e., $Pr(x)$ large).
- Use "many" bits for rare $x$ (i.e., $Pr(x)$ small).
Notes:
- $H(X)=\mathbb{E}_{x\sim X}[I(X=x)]$
- $H(X)\geq 0$
- $H(X)=0$ if and only if $Pr(X=x)=1$ for some $x\in \mathcal{X}$.
- Does not depend on $\mathcal{X}$ but on the probability distribution $Pr(X=x)$.
- Maximum entropy is achieved when the distribution is uniform. $H(Uniform(n))=\log_2 n$. Where $n$ is the number of events. ($a$ bits required to describe each event of size $2^a$).
<details>
<summary>Example</summary>
For uniform distribution $X\sim Uniform\{0,1\}$, we have $H(X)=\log_2 2=1$.
---
For Bernoulli distribution $X\sim Bernoulli(p)$, we have $H(X)=-p\log_2 p-(1-p)\log_2 (1-p)=H(p)$.
</details>
### Motivation
Optimal compression:
Consider the $X$ with distribution given belows:
|Value|Probability| Encoding|
|-----|-----------|---------|
|1 | 1/8 |000 |
|2 | 1/4 |001 |
|3 | 1/4 |01 |
|4 | 1/2 |1 |
The average length of the encoding is $1/8\times 3+1/4\times 3+1/4\times 2+1/2\times 1=7/4$.
And the entropy of $X$ is $H(X)=1/8\times \log_2 8+1/4\times \log_2 4+1/4\times \log_2 2+1/2\times \log_2 1=7/4$.
So the average length of the encoding is equal to the entropy of $X$.
This is the optimal compression.
This is the Huffman coding.
#### Few extra theorems that will not be proved in CS course
- **Theorem**: Avg. # of bits in any prefix-free compression of $X$ is ≥ $H(X)$.
- **Theorem**: Huffman coding is optimal.
- I.e., Avg. # of bits equals $H(X)$.
- **Disadvantage of Huffman coding**: the distribution must be known.
- Generally not the case.
- **[Lempel-Ziv 1978]**: Universal lossless data compression.
### Conditional and joint entropy
How does the entropy of different random variables interact?
- As a function of their dependence.
- Needed in order to relate:
- A variable and its compression.
- A variable and its transmission over a noisy channel.
- A variable and its encryption
#### Definition for joint entropy
Let $X$ and $Y$ be discrete random variables.
The joint entropy $H(X,Y)$ of $X$ and $Y$ is defined as:
$$
H(X,Y)=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(X=x, Y=y) \log_2 Pr(X=x, Y=y)
$$
Notes:
- $H(X,Y)\geq 0$
- $H(X,Y)=H(Y,X)$
- $H(X,Y)\geq \max\{H(X),H(Y)\}$
- $H(X,Y)\leq H(X)+H(Y)$ with equality if and only if $X$ and $Y$ are independent.
#### Conditional entropy
> [!NOTE]
>
> Recall that the conditional probability $P(Y|X)$ is defined as: $P(Y|X)=\frac{P(Y,X)}{P(X)}$.
What is the average amount of information revealed by $Y$ given the distribution of $X$?
For each given $x\in \mathcal{X}$, the conditional entropy $H(Y|X=x)$ is defined as:
$$
\begin{aligned}
H(Y|X=x)&=-\sum_{y\in \mathcal{Y}} \log_2 \frac{1}{Pr(Y=y|X=x)} \\
&=-\sum_{y\in \mathcal{Y}} Pr(Y=y|X=x) \log_2 Pr(Y=y|X=x) \\
$$
The conditional entropy $H(Y|X)$ is defined as:
$$
\begin{aligned}
H(Y|X)&=\mathbb{E}_{x\sim X}[H(Y|X=x)] \\
&=-\sum_{x\in \mathcal{X}} Pr(X=x)H(Y|X=x) \\
&=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(X=x, Y=y) \log_2 Pr(Y=y|X=x) \\
&=-\sum_{x\in \mathcal{X}, y\in \mathcal{Y}} Pr(x)\sum_{y\in \mathcal{Y}} Pr(Y=y|X=x) \log_2 Pr(Y=y|X=x) \\
$$
Notes:
- $H(X|X)=0$
- $H(Y|X)=0$ when $Y$ is a function of $X$.
- Conditional entropy not necessarily symmetric. $H(X|Y)\neq H(Y|X)$.
- Conditioning will not increase entropy. $H(X|Y)\leq H(X)$.
#### Chain rules of entropy
Joint entropy: $H(X,Y)=\mathbb{E}_{x\sim X, y\sim Y}\log \frac{1}{Pr(X=x, Y=y)}$.
Conditional entropy: $H(Y|X)=\mathbb{E}_{x\sim X}\log \frac{1}{Pr(Y=y|X=x)}$.
Chain rule: $H(X,Y)=H(X)+H(Y|X)$.
<details>
<summary>Proof</summary>
For **statistically independent** $X$ and $Y$, we have $Pr(x,y)=Pr(x)Pr(y)$.
$Pr(y|x)=\frac{Pr(x,y)}{Pr(x)}=\frac{Pr(x)Pr(y)}{Pr(x)}=Pr(y)$.
_Apply the symmetry of the joint distribution_.
</details>
<details>
<summary>Example of computing the conditional entropy</summary>
For the given distribution:
|Y\X|1|2|3|4|Y marginal|
|-----|-----|-----|-----|-----|-----|
|1 |1/8 |1/16 |1/32 |1/32 |1/4 |
|2 |1/16 |1/8 |1/16 |1/8 |1/4 |
|3 |1/16 |1/16 |1/16 |1/16 |1/4 |
|4 |1/4 |0|0 |0 |1/4 |
|X marginal|1/2 |1/4 |1/8 |1/8 |1.0 |
Here $H(X)=H((1/2,1/4,1/8,1/8))=-(1/2\log_2 1/2+1/4\log_2 1/4+1/8\log_2 1/8+1/8\log_2 1/8)=7/4$.
$H(Y)=H((1/4,1/4,1/4,1/4))=-(1/4\log_2 1/4+1/4\log_2 1/4+1/4\log_2 1/4+1/4\log_2 1/4)=2$.
$H(Y|X=1)=H((1/4,1/8,1/8,1/2))=-(1/4\log_2 1/4+1/8\log_2 1/8+1/8\log_2 1/8+1/2\log_2 1/2)=7/4$.
$H(Y|X=2)=H((1/4,1/2,1/4))=-(1/4\log_2 1/4+1/2\log_2 1/2+1/4\log_2 1/4)=1.5$.
$H(Y|X=3)=H((1/4,1/4,1/2,1/4))=-(1/4\log_2 1/4+1/4\log_2 1/4+1/2\log_2 1/2+1/4\log_2 1/4)=1.5$.
$H(Y|X=4)=H((1/4,1/4,1/2))=-(1/4\log_2 1/4+1/4\log_2 1/4+1/2\log_2 1/2)=1.5$.
So $H(Y|X)=\sum_{x\in \mathcal{X}} Pr(x)H(Y|X=x)=1/2\times 7/4+1/4\times 1.5+1/8\times 1.5+1/8\times 1.5=13/8$
</details>
### Mutual information
#### Definition for mutual information
The mutual information $I(X;Y)$ of $X$ and $Y$ is defined as:
$$
I(X;Y)=H(X)-H(X|Y)=H(Y)-H(Y|X)
$$
#### Properties of mutual information
- $I(X;Y)\geq 0$
- Prove via Jensen's inequality.
- Conditioning will not increase entropy.
- $I(X;Y)=I(Y;X)$ symmetry.
- $I(X;X)=H(X)-H(X|X)=H(X)$
- $I(X;Y)=H(X)+H(Y)-H(X,Y)$
<details>
<summary>Example of computing the mutual information</summary>
For the given distribution:
|Y\X|1|2|3|4|Y marginal|
|-----|-----|-----|-----|-----|-----|
|1 |1/8 |1/16 |1/32 |1/32 |1/4 |
|2 |1/16 |1/8 |1/16 |1/8 |1/4 |
|3 |1/16 |1/16 |1/16 |1/16 |1/4 |
|4 |1/4 |0|0 |0 |1/4 |
|X marginal|1/2 |1/4 |1/8 |1/8 |1.0 |
Recall from the previous example:
$H(Y|X)=\frac{13}{8}$
$H(Y)=2$
then the mutual information is:
$$
I(X;Y)=H(Y)-H(Y|X)=2-\frac{13}{8}=\frac{3}{8}
$$
So the entropy of $Y$ is reduced by $\frac{3}{8}$ bits on average when $X$ is known.
</details>
## Applications
### Channel capacity
Recall a channel is tuple of $(F,\Phi,\operatorname{Pr})$.
#### Definition of discrete channel
A discrete channel is a system consisting of a discrete input alphabet $\mathcal{X}$, a discrete output alphabet $\mathcal{Y}$, and a probability transition $\operatorname{Pr}(y|x)$.
The channel is _memoryless_ if the output at any time depends only on the input at that time and not on the inputs and outputs at other times.
#### Definition of channel capacity
The channel capacity $C$ of a channel is defined as:
$$
C=\max_{x\in \mathcal{X}} I(X;Y)
$$
where $I(X;Y)$ is the mutual information between $X$ and $Y$.
#### Shannon's noisy coding theorem
Recall the rate of the code is $R=\frac{\log_{|F|}|\mathcal{C}|}{n}$.
For a discrete memoryless channel with capacity $C$, every rate $R<C$ is achievable.
- There exists a sequence of codes of length $n$ and size $|F|^{nR}$ with vanishing probability of error as $n\to \infty$.
- In 1 channel use, it is impossible beat the noise.
- In $n$ channel uses as $n\to \infty$,it is possible to beat the **all** the noise.
#### Corollary for the binary symmetric channel
The capacity of the binary symmetric channel with crossover probability $p$ is $1-H(p)$.
<details>
<summary>Proof</summary>
$$
\begin{aligned}
H(Y|X=x)&=-\operatorname{Pr}(y=0|x)\log_2 \operatorname{Pr}(y=0|x)-\operatorname{Pr}(y=1|x)\log_2 \operatorname{Pr}(y=1|x) \\
&=-p\log p-(1-p)\log (1-p)\\
&=H(p)
\end{aligned}
$$
So,
$$
\begin{aligned}
H(Y|X)&=\sum_{x\in \mathcal{X}} \operatorname{Pr}(x)H(Y|X=x)\\
&=H(p)\sum_{x\in \mathcal{X}} \operatorname{Pr}(x) \\
&=H(p)
$$
So,
$$
\begin{aligned}
I(X;Y)&=H(Y)-H(Y|X)\\
&\leq 1-H(p)
$$
When $p=0$ the capacity is $1$.
When $p=\frac{1}{2}$ the capacity is $0$. (completely noisy channel)
</details>