From b9019981925cd44f5a06628c59212a7741445c18 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Fri, 16 Jan 2026 23:48:00 -0600 Subject: [PATCH] updates --- content/Math4302/Math4302_L1.md | 2 +- content/Math4302/Math4302_L2.md | 4 +- content/Math4302/Math4302_L3.md | 99 +++++++++++++++++++++++++++++++++ content/Math4302/_meta.js | 1 + 4 files changed, 104 insertions(+), 2 deletions(-) create mode 100644 content/Math4302/Math4302_L3.md diff --git a/content/Math4302/Math4302_L1.md b/content/Math4302/Math4302_L1.md index 6b7022e..387ea82 100644 --- a/content/Math4302/Math4302_L1.md +++ b/content/Math4302/Math4302_L1.md @@ -29,7 +29,7 @@ Generally, we can define a binary operation over sets whatever we want. --- -Let $X=\{a,b,c\}$ and we can define the table for binary operation as follows: +Let $X=\{a,b,c\}$ and we can define the (Cayley) table for binary operation as follows: |*| a | b | c | |---|---|---|---| diff --git a/content/Math4302/Math4302_L2.md b/content/Math4302/Math4302_L2.md index 3b2748a..8becf0d 100644 --- a/content/Math4302/Math4302_L2.md +++ b/content/Math4302/Math4302_L2.md @@ -146,6 +146,8 @@ right cancellation are the same > [!NOTE] > > This also implies that every row/column of the table representation of the binary operation is distinct. +> +> _If not, suppose $a,b$ have the same row/column, then we can prove $a=b$ using cancellation from right and left._ 3. We can solve equations $a*x=b \text{ and } x*a=b $ uniquely. @@ -156,7 +158,7 @@ $x=a^{-1}* b$, similarly $x=b* a^{-1}$. Group with 1 element $\{e\}$. -Group with 2 elements $\{e,a\}$. +Group with 2 elements $\{e,a\}$. (example is $(\{-1,1\},\times)$) And diff --git a/content/Math4302/Math4302_L3.md b/content/Math4302/Math4302_L3.md new file mode 100644 index 0000000..5791a11 --- /dev/null +++ b/content/Math4302/Math4302_L3.md @@ -0,0 +1,99 @@ +# Math4302 Modern Algebra (Lecture 3) + +## Groups + +
+More examples for groups + +Let $\mathbb{Q}^+$ be the set of positive rational numbers. + +Then $(\mathbb{Q}^+,\times)$ is a abelian group with identity $1$ and inverse $a^{-1}=\frac{1}{a}$. + +If we defined $*$ by $a*b=\frac{ab}{2}$, then we have identity $2$. $a*e=\frac{ae}{2}=a$, we have $e=2$. + +and inverse $a^{-1}a=\frac{a^2}{2}=2$, therefore $a^{-1}=\frac{4}{a}$. + +This is also an abelian group. + +
+ +### Properties for groups + +- $(a*b)^{-1}=b^{-1}*a^{-1}$ (inverse) +- $a*b=a*c\implies b=c$ (cancellation on the left) +- $b*a=c*a\implies b=c$ (cancellation on the right) +- If $a*b=e$, then $b=a^{-1}$ (we can solve linear equations) + +#### Additional notation + +for $n\geq 1$, + +- $a^n=a*a\cdot \cdots \cdot a$ (n times) +- $a^{-n}=a^{-1}\cdot \cdots \cdot a^{-1}$ (n times) + +for $n=0$, $a^0=e$ + +We can easily prove this is equivalent to our usual sense for power notations. + +That is + +- $a^n*a^m=a^{n+m}$ +- $(a^n)^m=a^{nm}$ +- $a^{-n}=(a^{-1})^n$ + +### Finite groups + +Group with 4 elements. + +|*|e|a|b|c| +|---|---|---|---|---| +|e|e|a|b|c| +|a|a|b|c|e| +|b|b|c|e|a| +|c|c|e|a|b| + +Note $a,c$ are inverses and $b$ self inverse. + +_isomorphic to $(\mathbb{Z}_4,+)$, $(\{1,-1,i,-i\},\cdot)$_ + +and we may also have + +|*|e|a|b|c| +|---|---|---|---|---| +|e|e|a|b|c| +|a|a|e|c|b| +|b|b|c|e|a| +|c|c|b|a|e| + +is + +#### Cyclic groups + +It is the group of integers modulo addition $n$. + +- Associativity: $(a+b)+c=a+(b+c)$ +- Identity: $a+0=a$ +- Inverses: $a+(-a)=0$ + +For group with $4$ elements + +|*|0|1|2|3| +|---|---|---|---|---| +|0|0|1|2|3| +|1|1|2|3|0| +|2|2|3|0|1| +|3|3|0|1|2| + +#### Complex numbers + +Consider $\{1,i,-1,-i\}$ with multiplication. + +|*|1|i|-1|-i| +|---|---|---|---|---| +|1|1|i|-1|-i| +|i|i|-1|-i|1| +|-1|-1|-i|1|i| +|-i|-i|1|i|-1| + +Note that if we replace $1$ with $0$ and $i$ with $1$, and $-1$ with $2$ and $-i$ with $3$, you get the exact the same table as $\mathbb{Z}_4$. + diff --git a/content/Math4302/_meta.js b/content/Math4302/_meta.js index d29a0c7..db2b413 100644 --- a/content/Math4302/_meta.js +++ b/content/Math4302/_meta.js @@ -5,4 +5,5 @@ export default { }, Math4302_L1: "Modern Algebra (Lecture 1)", Math4302_L2: "Modern Algebra (Lecture 2)", + Math4302_L3: "Modern Algebra (Lecture 3)", }