final updates

This commit is contained in:
Zheyuan Wu
2025-04-22 14:22:32 -05:00
parent cb355437ad
commit bb21338ccc
5 changed files with 368 additions and 2 deletions

View File

@@ -94,7 +94,7 @@ $$
QED
## Application ot valuating definite integrals
## Application to evaluating definite integrals
Idea:

View File

@@ -1 +1,148 @@
# Math416 Lecture 26
## Continue on Application to evaluating definite integrals
Note: Contour can never go through a singularity.
Recall the semi annulus contour.
Know that $\int_\gamma f(z)dz=0$.
So $\int_A+\int_B+\int_C+\int_D=0$.
From last lecture, we know that $\int_D=0$ and $\int_A+\int_C=2i\int_0^\infty \frac{\sin x}{x}dx$.
### Integrating over $B$
Do $B$, we have $\gamma(t)=\epsilon e^{it}$ for $t\in[0,\pi]$.
$\int_B=-\int_0^\pi f(\epsilon e^{it})\epsilon i e^{it}dt$.
$f(z)=\frac{e^{iz}}{z}=\frac{1}{z}(1+iz-\frac{z^2}{2!}+\cdots)$.
So $z f(z)=1+O(\epsilon)$ and $f(z)=\frac{1}{z}+O(\frac{\epsilon}{z})$.
$$
\begin{aligned}
\int_B&=-\int_0^\pi (\frac{1}{\epsilon}e^{it}+O(1))\epsilon i e^{it}dt\\
&=-i\int_0^\pi 1dt+O(\epsilon)\\
&=-i\pi+O(\epsilon)
\end{aligned}
$$
### Integrating over $D$
#### Method 1: Using estimate
$z=Re^{it}$ for $t\in[0,\pi]$.
$f(z)=\frac{e^{iz}}{z}=\frac{e^{iRe^{it}}}{Re^{it}}$.
$Re^{it}=R(\cos t+i\sin t)$, $iRe^{it}=-R(\sin t-i\cos t)$.
$e^{iRe^{it}}=e^{-R\sin t}e^{iR\cos t}$.
$\max|f(z)|=\max\frac{|e^{iR\cos t}|}{|R e^{it}|}=\frac{1}{R}$.
This only bounds the function $|\int_D|\leq \pi R\frac{1}{R}=\pi$.
This is not a good estimate.
#### Method 2: Hard core integration
$\gamma(t)=Re^{it}$ for $t\in[0,\pi]$.
$$
\begin{aligned}
\int_D&=\int_0^\pi \frac{e^{iRe^{it}}}{R e^{it}}iR e^{it}dt\\
&=i\int_0^\pi e^{iR\cos t}e^{-R\sin t}dt\\
\end{aligned}
$$
Notice that we can use $\frac{2}{\pi}t$ to replace $\sin t$.
$$
\begin{aligned}
\left|\int_D\right|&\leq\int_0^\pi e^{-R\sin t}dt\\
&=2\int_0^{\pi/2} e^{-R\sin t}dt\\
&\leq 2\int_0^{\pi/2} e^{-2Rt/\pi}dt\\
&=-\frac{2\pi}{R}(e^{-\frac{R\pi}{2}t})|_0^{\pi/2}\\
&\leq\frac{\pi}{R}
\end{aligned}
$$
As $R\to\infty$, $\left|\int_D\right|\to 0$.
So $\int_D=0$.
So we have $\int_A+\int_C=2i\int_0^\infty \frac{\sin x}{x}dx=i\pi$.
So $\int_0^\infty \frac{\sin x}{x}dx=\frac{\pi}{2}$.
## Application to evaluate $\int_{-\infty}^\infty \frac{\cos x}{1+x^4}dx$
$f(z)=\frac{e^{iz}}{1+z^4}=\frac{\cos z+i\sin z}{1+z^4}$.
Our desired integral can be evaluated by $\int_{-R}^R f(z)dz$
To evaluate the singularity, $z^4=-1$ has four roots by the De Moivre's theorem.
$z^4=-1=e^{i\pi+2k\pi i}$ for $k=0,1,2,3$.
So $z=e^{i\theta}$ for $\theta=\frac{\pi}{4}+\frac{k\pi}{2}$ for $k=0,1,2,3$.
So the singularities are $z=e^{i\pi/4},e^{i3\pi/4},e^{i5\pi/4},e^{i7\pi/4}$.
Only $z=e^{i\pi/4},e^{i3\pi/4}$ are in the upper half plane.
So we can use the semi-circle contour to evaluate the integral. Name the path as $\gamma$.
$\int_\gamma f(z)dz=2\pi i\left[\operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)\right]$.
The two poles are simple poles.
$\operatorname{Res}_{z_0}(f)=\lim_{z\to z_0}(z-z_0)f(z)$.
So
$$
\begin{aligned}
\operatorname{Res}_{z=e^{i\pi/4}}(f)&=\lim_{z\to e^{i\pi/4}}(z-e^{i\pi/4})\frac{e^{iz}}{1+z^4}\\
&=\frac{(z-e^{i\pi/4})e^{iz}}{(z-e^{i\pi/4})(z-e^{i3\pi/4})(z-e^{i5\pi/4})(z-e^{i7\pi/4})}\\
&=\frac{e^{ie^{i\pi/4}}}{(e^{i\pi/4}-e^{i3\pi/4})(e^{i\pi/4}-e^{i5\pi/4})(e^{i\pi/4}-e^{i7\pi/4})}
\end{aligned}
$$
A short cut goes as follows:
We know $p(z)=1+z^4$ has four roots $z_1,z_2,z_3,z_4$.
$$
\lim_{z\to z_0}\frac{(z-z_0)}{p(z)}=\frac{1}{p'(z_0)}
$$
So
$$
\operatorname{Res}_{z=e^{i\pi/4}}(f)=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}}
$$
Similarly,
$$
\operatorname{Res}_{z=e^{i3\pi/4}}(f)=\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}}
$$
So the sum of the residues is
$$
\begin{aligned}
\operatorname{Res}_{z=e^{i\pi/4}}(f)+\operatorname{Res}_{z=e^{i3\pi/4}}(f)&=\frac{e^{ie^{i\pi/4}}}{4e^{i3\pi/4}}+\frac{e^{ie^{i3\pi/4}}}{4e^{i\pi/4}}\\
&=\frac{e^{\frac{i}{\sqrt{2}}} e^{-\frac{1}{\sqrt{2}}}}{4[-\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}+\frac{e^{-\frac{i}{\sqrt{2}}}-e^{-\frac{1}{\sqrt{2}}}}{4[\frac{1}{\sqrt{2}}+i\frac{1}{\sqrt{2}}]}\\
&=\frac{\pi\sqrt{2}}{2}e^{-\frac{1}{\sqrt{2}}}(\cos\frac{1}{\sqrt{2}}+\sin\frac{1}{\sqrt{2}})
\end{aligned}
$$
SKIP
Review on next lecture.