From bdf0ff9f064c00931ea289e50f19f428c62b7956 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Tue, 10 Feb 2026 10:08:34 -0600 Subject: [PATCH] Update Math4303_L12.md --- content/Math4302/Math4303_L12.md | 134 ++++++++++++++++++++++++++++++- 1 file changed, 133 insertions(+), 1 deletion(-) diff --git a/content/Math4302/Math4303_L12.md b/content/Math4302/Math4303_L12.md index 728b7a6..a79d301 100644 --- a/content/Math4302/Math4303_L12.md +++ b/content/Math4302/Math4303_L12.md @@ -1,3 +1,135 @@ # Math4303 Modern Algebra (Lecture 12) -## Groups \ No newline at end of file +## Groups + +### Direct products + +$\mathbb{Z}_m\times \mathbb{Z}_n$ is cyclic if and only if $m$ and $n$ have greatest common divisor $1$. + +More generally, for $\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}\times \cdots \times \mathbb{Z}_{n_k}$, if $n_1,n_2,\cdots,n_k$ are pairwise coprime, then the direct product is cyclic. + +
+Proof + +For the forward direction, use $\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}=\mathbb{Z}_{n_1n_2}$. if $n_1, n_2$ are coprime. + + +For the backward, suppose to the contrary that for example $\gcd(n_1,n_2)=d>1$, then $G=\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}\times H$, where any element in $H$ has order $\leq |H|$ and any element in $\mathbb{Z}_{n_1}\times \mathbb{Z}_{n_2}$ has order $<\frac{n_1n_2}{d}$, therefore, all the elements in $G$ will have order strictly less than the size $n_1n_2\ldots n_k$ of the group. + +
+ +#### Corollary for composition of cyclic groups + +If $n=p_1^{m_1}\ldots p_k^{m_k}$, where $p_i$ are distinct primes, then the group + +$$ +G=\mathbb{Z}_n=\mathbb{Z}_{p_1^{m_1}}\times \mathbb{Z}_{p_2^{m_2}}\times \cdots \times \mathbb{Z}_{p_k^{m_k}} +$$ + +is cyclic. + +
+Example for product of cyclic groups and order of element + +$$ +\mathbb{Z}_{8}\times\mathbb{Z}_8\times \mathbb{Z}_12 +$$ + +the order for $(1,1,1)$ is 24. + +What is the maximum order of an element in this group? + +Guess: + +$8*3=24$ + +
+ +### Structure of finitely generated abelian groups + +#### Theorem for finitely generated abelian groups + +Every finitely generated abelian group $G$ is isomorphic to + +$$ +Z_{p_1}^{n_1}\times Z_{p_2}^{n_2}\times \cdots \times Z_{p_k}^{n_k}\times\underbrace{\mathbb{Z}\times \ldots \times \mathbb{Z}}_{m\text{ times}} +$$ + +
+Example + +If $G$ is abelian of size $8$, then $G$ is isomorphic to one of the following: + +- $\mathbb{Z}_2\times \mathbb{Z}_2\times \mathbb{Z}_2$ (non cyclic) +- $\mathbb{Z}_2\times \mathbb{Z}_4$ (non cyclic) +- $\mathbb{Z}_2$ (cyclic) + +And any two of them are not isomorphic + +--- + +Find all abelian group of order $72$. + +Since $72=2^3*3^2$, There are 3 possibilities for the $2^3$ part, and there are 2 possibilities for the $3^2$ part. + +Note that $\mathbb{Z}_8\times\mathbb{Z}_9$, where $8,9$ are coprime, $\mathbb{Z}_8\times\mathbb{Z}_9=\mathbb{Z}_{72}$, is cyclic. + +There are 6 possibilities in total. + +
+ +#### Corollary for divisor size of abelian subgroup + +If $g$ is abelian and $|G|=n$, then for every divisor $m$ of $n$, $G$ has a subgroup of order $m$. + +> [!WARNING] +> +> This is not true if $G$ is not abelian. +> +> Consider $A_4$ (alternating group for $S_4$) does not have a subgroup of order 6. + + +
+Proof for the corollary + +Write $G=\mathbb{Z}_{p_1}^{n_1}\times \mathbb{Z}_{p_2}^{n_2}\times \cdots \times \mathbb{Z}_{p_k}^{n_k}$ where $p_i$ are distinct primes. + +Therefore $n=p_1^{m_1}\ldots p_k^{m_k}$. + +For any divisor $d$ of $n$, we can write $d=p_1^{m_1}\ldots p_k^{m_k}$, where $m_i\leq n_i$. + +Now for each $p_i$, we choose the subgroup $H_i$ of size $p_i^{m_i}$ in $\mathbb{Z}_{p_i}^{n_i}$. (recall that every cyclic group of size $r$ and any divisor $s$ of $r$, there is a subgroup of order $s$. If the group is generated by $a$, then use $a^{\frac{r}{s}}$ to generate the subgroup.) + +We can construct the subgroup $H=H_1\times H_2\times \cdots \times H_k$ is the subgroup of $G$ of order $d$. +
+ +### Cosets + +#### Definition of Cosets + +Let $G$ be a group and $H$ its subgroup. + +Define a relation on $G$ and $a\sim b$ if $a^{-1}b\in H$. + +This is an equivalence relation. + +- Reflexive: $a\sim a$: $a^{-1}a=e\in H$ +- Symmetric: $a\sim b\Rightarrow b\sim a$: $a^{-1}b\in H$, $(a^{-1}b)^{-1}=b^{-1}a\in H$ +- Transitive: $a\sim b$ and $b\sim c\Rightarrow a\sim c$ : $a^{-1}b\in H, b^{-1}c\in H$, therefore their product is also in $H$, $(a^{-1}b)(b^{-1}c)=a^{-1}c\in H$ + +So we get a partition of $G$ to equivalence classes. + +Let $a\in G$, the equivalence class containing $a$ + +$$ +aH=\{x\in G| a\sim x\}=\{x\in G| a^{-1}x\in H\}=\{x|x=ah\text{ for some }h\in H\} +$$ + +This is called the coset of $a$ in $H$. + +
+Example + +Consider $G=S_3$ + +
\ No newline at end of file