From c118ab699f82451062c81ec05a6c8f73971d1ee6 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Fri, 28 Mar 2025 10:52:50 -0500 Subject: [PATCH] Update Math4121_L27.md --- pages/Math4121/Math4121_L27.md | 147 ++++++++++++++++++++++++++++++++- 1 file changed, 146 insertions(+), 1 deletion(-) diff --git a/pages/Math4121/Math4121_L27.md b/pages/Math4121/Math4121_L27.md index cd8bdf8..1ff3c3e 100644 --- a/pages/Math4121/Math4121_L27.md +++ b/pages/Math4121/Math4121_L27.md @@ -1 +1,146 @@ -# Lecture 27 \ No newline at end of file +# Math4121 Lecture 27 + +## Lebesgue Measure + +### Outer Measure + +$$ +m_e(S)=\inf\left\{\sum_{n=1}^\infty \ell(I_n): S\subset \bigcup_{n=1}^\infty I_n\right\} +$$ + +where $I_j$ is an open interval + +**Properties:** + +1. $m_e(I)=\ell(I)$ +2. Countably sub-additive: $m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq \sum_{n=1}^\infty m_e(S_n)$ (Prove today) +3. does not repect complementation (Build in to Borel measure) + +Why does Jordan content respect complementation? + +$(\text{Finite union of intervals })^C=\text{another finite union of intervals}$ + +We know this failed for countable unions. + +Example: + +$$ +\bigcup_{n=1}^\infty \left(q_n-\frac{\epsilon}{2^n},q_n+\frac{\epsilon}{2^n}\right) +$$ + +Where $q_n$ is dense. + +### Inner Measure + +Say $S\subset I$ + +$$ +m_i(S)=m(I)-m_e(I\setminus S) +$$ + +where $m(I)=\ell(I)$ + +Say $S$ is (Lebesgue) measurable if $m_i(S)=m_e(S)$, call this value $m(S)=m_e(S)=m_i(S)$ the (Lebesgue) measure of $S$. + +#### Corollary of measurability of subsets + +If $S$ is measurable, and $S\subset T$, then + +$$ +m(S)=m_e(S)=m(I)-m_e(I\setminus S) +$$ + +$$ +m(I\setminus S)=m(I)-m(S) +$$ + +$I\setminus S$ is Lebesgue measurable and $m(I)=m(S)+m(I\setminus S)$ + +#### Proposition 5.8 (Countable additivity over measurable sets) + +If $S_n$ are measurable, then + +$$ +m_e\left(\bigcup_{n=1}^\infty S_n\right)\leq\sum_{n=1}^\infty m(S_n) +$$ + +Proof: + +Let $\epsilon>0$ and for each $j$, let $\{I_{i,j}\}_{i=1}^\infty$ be a cover of $S_j$ s.t. + +$$ +\sum_{i=1}^\infty \ell(I_{i,j})