From 84594916dd6f7d67b54a8ff078b5e1afffe56682 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Fri, 24 Jan 2025 11:48:20 -0600 Subject: [PATCH] update --- pages/CSE559A/CSE559A_L3.md | 0 pages/CSE559A/CSE559A_L4.md | 0 pages/CSE559A/_meta.js | 6 +- pages/Math4121/Math4121_L5.md | 120 +++++++++++++++++++++++++++++++++- 4 files changed, 123 insertions(+), 3 deletions(-) create mode 100644 pages/CSE559A/CSE559A_L3.md create mode 100644 pages/CSE559A/CSE559A_L4.md diff --git a/pages/CSE559A/CSE559A_L3.md b/pages/CSE559A/CSE559A_L3.md new file mode 100644 index 0000000..e69de29 diff --git a/pages/CSE559A/CSE559A_L4.md b/pages/CSE559A/CSE559A_L4.md new file mode 100644 index 0000000..e69de29 diff --git a/pages/CSE559A/_meta.js b/pages/CSE559A/_meta.js index 2d3ca47..e6563d1 100644 --- a/pages/CSE559A/_meta.js +++ b/pages/CSE559A/_meta.js @@ -3,6 +3,8 @@ export default { "---":{ type: 'separator' }, - CSE559A_L1: "Cmputer Vision (Lecture 1)", - CSE559A_L2: "Cmputer Vision (Lecture 2)", + CSE559A_L1: "Computer Vision (Lecture 1)", + CSE559A_L2: "Computer Vision (Lecture 2)", + CSE559A_L3: "Computer Vision (Lecture 3)", + CSE559A_L4: "Computer Vision (Lecture 4)", } diff --git a/pages/Math4121/Math4121_L5.md b/pages/Math4121/Math4121_L5.md index 23c2f01..1a399f5 100644 --- a/pages/Math4121/Math4121_L5.md +++ b/pages/Math4121/Math4121_L5.md @@ -1 +1,119 @@ -# Lecture 5 \ No newline at end of file +# Lecture 5 + +## Continue on differentiation + +### L'Hôpital's Rule + +Suppose $f$ and $g$ are real differentiable on $(a,b)$ and $g'(x)\neq 0$ for all $x\in (a,b)$. + +Suppose $\frac{f'(x)}{g'(x)}\to A$ as $x\to a$, + +If $f(x)\to 0$ and $g(x)\to 0$ as $x\to a$, + +or $g(x)\to \infty$ as $x\to a$, + +then $\frac{f(x)}{g(x)}\to A$ as $x\to a$. + +Proof: + +**Main step: Let $-\inftyA$, there exists $c\in (a,b)$ such that $\frac{f(x)}{g(x)} Topological definition of limit: +> +> $h(x)\to A$ as $x\to a$ if $\forall \epsilon>0$, $\exists \delta>0$ such that $|x-a|<\delta$ implies $|h(x)-A|<\epsilon$. +> +> In other words, if for any open neighborhood $V$ of $A$, there exists an open neighborhood $U$ of $a$ such that $h(U)\subseteq V$. + +Case 1: $A=-\infty$, for any $q>A$, there exists $\delta>0$ such that $x\in (a,a+\delta)$ implies $\frac{f(x)}{g(x)}0$ and take $q=A+\epsilon$. $\exists c_1\in (a,b)$ such that $\forall x\in (a,c_1)$, $\frac{f(x)}{g(x)}-A$. Apply main step, $\exists c_2\in (a,b)$ such that $\forall x\in (a,c_2)$, $\frac{F(x)}{g(x)}<-A+\epsilon$. so $\forall x\in (a,c_2)$, $\frac{f(x)}{g(x)}>A-\epsilon$. + +We take $c=\min(c_1,c_2)$. Then $\forall x\in (a,c)$, $\frac{f(x)}{g(x)}