From c41f7204a80d7887b3ba206e374e9e3f8593a824 Mon Sep 17 00:00:00 2001 From: Zheyuan Wu <60459821+Trance-0@users.noreply.github.com> Date: Fri, 17 Oct 2025 11:52:31 -0500 Subject: [PATCH] updates --- .gitignore | 5 +- content/CSE510/CSE510_L15.md | 6 +- content/Math4201/Math4201_L21.md | 98 ++++++++++++++++++++++++++++++++ content/Math4201/_meta.js | 1 + package.json | 2 +- 5 files changed, 107 insertions(+), 5 deletions(-) create mode 100644 content/Math4201/Math4201_L21.md diff --git a/.gitignore b/.gitignore index 726b0bb..ab7a57a 100644 --- a/.gitignore +++ b/.gitignore @@ -142,4 +142,7 @@ analyze/ .turbo/ # pagefind postbuild -public/_pagefind/ \ No newline at end of file +public/_pagefind/ + +# npm package lock file for different platforms +package-lock.json \ No newline at end of file diff --git a/content/CSE510/CSE510_L15.md b/content/CSE510/CSE510_L15.md index 1aa6254..343c4e1 100644 --- a/content/CSE510/CSE510_L15.md +++ b/content/CSE510/CSE510_L15.md @@ -129,15 +129,15 @@ Proof as exercise. The objective function is: $$ -J(\theta)=\int_{s\in S} \pho^{\mu}(s) r(s,\mu_\theta(s)) ds +J(\theta)=\int_{s\in S} \rho^{\mu}(s) r(s,\mu_\theta(s)) ds $$ -where $\pho^{\mu}(s)$ is the stationary distribution under the behavior policy $\mu_\theta(s)$. +where $\rho^{\mu}(s)$ is the stationary distribution under the behavior policy $\mu_\theta(s)$. Proof along the same lines of the standard policy gradient theorem. $$ -\nabla_\theta J(\theta) = \mathbb{E}_{\mu_\theta}[\nabla_\theta Q^{\mu_\theta}(s,a)]=\mathbb{E}_{s\sim \pho^{\mu}}[\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)}] +\nabla_\theta J(\theta) = \mathbb{E}_{\mu_\theta}[\nabla_\theta Q^{\mu_\theta}(s,a)]=\mathbb{E}_{s\sim \rho^{\mu}}[\nabla_\theta \mu_\theta(s) \nabla_a Q^{\mu_\theta}(s,a)\vert_{a=\mu_\theta(s)}] $$ ### Issues for DPG diff --git a/content/Math4201/Math4201_L21.md b/content/Math4201/Math4201_L21.md new file mode 100644 index 0000000..e40eb0f --- /dev/null +++ b/content/Math4201/Math4201_L21.md @@ -0,0 +1,98 @@ +# Math4201 Topology I (Lecture 21) + +## Simplicial complexes + +### Recall from last lecture + +Let $\sigma=\{a_0,a_1,\dots,a_n\}$ be a finite set. The $n$-dimensional simplex determined by $\tau$ is given as: + +$$ +\Delta^n(a_0,a_1,\dots,a_n)=\left\{t_0a_0+t_1a_1+\cdots+t_na_n\mid t_i\geq 0, \sum_{i=0}^n t_i=1\right\} +$$ + +If we have vertices $\tau=\{a_0,a_1,\dots,a_k\}$, $\tau\subseteq \sigma$, the face of $\Delta^n$ is determined by $\tau$ with dimension $|\tau|-1$. + +$\Delta^n$ is the topologized by the subspace topology inherited by the standard topology on Euclidean space $\mathbb{R}^n$. + +Note that there are different ways to of embedding and all give the same topological space. + +### Abstract simplicial complexes + +#### Definition for abstract simplicial complex + +Let $V=\{v_0,v_1,\dots,v_n\}$ be a finite set (set of vertices of a simplicial complex). $K$ be the collection of subspaces of $V$. + +1. $\sigma\in K$ and $\tau\subseteq \sigma$, then $\tau\in K$. +2. For any $v\in V$, $\{v\}\in K$. + +Then $\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta_\sigma$. + +$\Delta_\sigma$ is a simplex of dimension $|\sigma|-1$. + +$X_K$ is the topological realization of $K$. + +Define an equivalence relation on $\tilde{X_k}$ as follows: + +$x\in \Delta_\sigma\sim x'\in \Delta_{\sigma'}$ if and only if $x\in \Delta_{\sigma'\cap \sigma}^{|\sigma'\cap \sigma|-1}\subseteq \Delta_\sigma$ and $x'\in \Delta_{\sigma'\cap \sigma}^{|\sigma'\cap \sigma|-1}\subseteq \Delta_{\sigma'}$. + +This just means that the two points have the same barycentric coordinates in the simplex. + +#### Definition of barycentric coordinates + +Let $\sigma=\{a_0,a_1,\dots,a_n\}$ be a simplex. The barycentric coordinates of a point $x\in \Delta_\sigma$ are the coefficients $t_0,t_1,\dots,t_n$ such that: + +$$ +x=t_0a_0+t_1a_1+\cdots+t_na_n +$$ + +and $t_i\geq 0$ and $\sum_{i=0}^n t_i=1$. + +The point $x$ is in the simplex $\Delta_\sigma$ if and only if $t_i\geq 0$ for all $i$. + +
+Example of abstract simplicial complex + +Let $V=\{v_1,v_2,v_3,v_4,v_5\}$. + +If we want to enclose $K=\{\{v_1,v_2,v_3,v_4\},\{v_3,v_4,v_5\}\}$, we need to fill all the singletons $\{v_1\},\{v_2\},\{v_3\},\{v_4\},\{v_5\}$, all the pairs in $K$, $\{v_1,v_2\},\{v_1,v_3\},\{v_1,v_4\},\{v_2,v_3\},\{v_2,v_4\},\{v_3,v_4\},\{v_3,v_5\},\{v_4,v_5\}$, and the triangle $\{v_1,v_2,v_3\}, \{v_1,v_2,v_4\}, \{v_1,v_3,v_4\}, \{v_2,v_3,v_5\}$. + +The final simplicial complex is $\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta(v_1,v_2,v_3,v_4)\sqcup \Delta(v_3,v_4,v_5)\sqcup \{v_1,v_2,v_3,v_4,v_5\}$. + +We use $\Delta(v_1,v_2,v_3,v_4)$ to denote the simplex with vertices $v_1,v_2,v_3,v_4$. + +
+ +#### Defining maps on abstract simplicial complexes + +Let $K$ be an abstract simplicial complex. $V=\{v_1,v_2,\dots,v_m\}$ + +A map $\pi:\tilde{X_k}\to X_K$ is a quotient map + +$X_K$ is equipped with the quotient topology. + +Let $f:V\to \mathbb{R}^m$, then $u_i=f(v_i)$. + +$\tilde{X_k}=\bigsqcup_{\sigma\in K}\Delta_\sigma$ is the disjoint union of all simplices in $K$. + +For $\sigma=\{v_{i_0},\dots,v_{i_k}\}$, we have a map $\Delta_\sigma\to \mathbb{R}^\ell$ given by $[t_{i_0}u_0+t_{i_1}u_1+\cdots+t_{i_k}u_k\mid t_j\geq 0, \sum_{j=0}^k t_j=1]$. + +This is well-defined because the coefficients $t_j$ are uniquely determined by the vertices $v_{i_0},\dots,v_{i_k}$. + +This induces $F:\tilde{X_k}\to \mathbb{R}^\ell$. This map is continuous because $F\vert_{\Delta_\sigma}$ is continuous for all $\sigma\in K$. + +Recall that if for any $x\in X_K$, the map $F$ restricted to $\pi^{-1}(x)$ is constant, then there is a unique continuous map $g$ satisfying $F=g\circ \pi$. + +In fact, this condition is satisfied and there is such a map $G$. + +
+Example of map on abstract simplicial complexes + +Consider the previous example of abstract simplicial complex. + +Let $f:V\to \mathbb{R}$ by $f(v_i)=i$. + +Then $f(\Delta_{\{v_1,v_2,v_3,v_4\}})=[1,4]$ + +Then $f(\Delta_{\{v_1,v_3\}})=[1,3]$ + +
\ No newline at end of file diff --git a/content/Math4201/_meta.js b/content/Math4201/_meta.js index 4624b9b..c6b0d10 100644 --- a/content/Math4201/_meta.js +++ b/content/Math4201/_meta.js @@ -24,4 +24,5 @@ export default { Math4201_L18: "Topology I (Lecture 18)", Math4201_L19: "Topology I (Lecture 19)", Math4201_L20: "Topology I (Lecture 20)", + Math4201_L21: "Topology I (Lecture 21)", } diff --git a/package.json b/package.json index 3f4d67e..a65e891 100644 --- a/package.json +++ b/package.json @@ -19,7 +19,7 @@ "next-sitemap": "^4.2.3", "nextra": "^4.2.17", "nextra-theme-docs": "^4.2.17", - "pagefind": "^1.3.0", + "pagefind": "^1.4.0", "react": "^19.1.0", "react-dom": "^19.1.0" },