updates
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
Some checks failed
Sync from Gitea (main→main, keep workflow) / mirror (push) Has been cancelled
This commit is contained in:
@@ -112,7 +112,7 @@ Recall that $\mathbb{R}_{\ell}$ with lower limit topology is normal. But $\mathb
|
|||||||
|
|
||||||
This shows that $\mathbb{R}_{\ell}$ is not metrizable. Otherwise $\mathbb{R}_{\ell}\times \mathbb{R}_{\ell}$ would be metrizable. Which could implies that $\mathbb{R}_{\ell}$ is normal.
|
This shows that $\mathbb{R}_{\ell}$ is not metrizable. Otherwise $\mathbb{R}_{\ell}\times \mathbb{R}_{\ell}$ would be metrizable. Which could implies that $\mathbb{R}_{\ell}$ is normal.
|
||||||
|
|
||||||
#### Theorem of metrizability
|
#### Theorem of metrizability (Urysohn metirzation theorem)
|
||||||
|
|
||||||
If $X$ is normal and second countable, then $X$ is metrizable.
|
If $X$ is normal and second countable, then $X$ is metrizable.
|
||||||
|
|
||||||
|
|||||||
@@ -1,8 +1,8 @@
|
|||||||
# Math4201 Topology I (Lecture 36)
|
# Math4201 Topology I (Lecture 36)
|
||||||
|
|
||||||
## Countable Axioms and Separation Axioms
|
## Separation Axioms
|
||||||
|
|
||||||
### Separation Axioms
|
### Regular spaces
|
||||||
|
|
||||||
#### Proposition for $T_1$ spaces
|
#### Proposition for $T_1$ spaces
|
||||||
|
|
||||||
|
|||||||
@@ -1,8 +1,8 @@
|
|||||||
# Math4201 Topology I (Lecture 37)
|
# Math4201 Topology I (Lecture 37)
|
||||||
|
|
||||||
## Countable Axioms and Separation Axioms
|
## Separation Axioms
|
||||||
|
|
||||||
### Continue on Normal spaces
|
### Normal spaces
|
||||||
|
|
||||||
#### Proposition of normal spaces
|
#### Proposition of normal spaces
|
||||||
|
|
||||||
|
|||||||
@@ -30,9 +30,9 @@ Choose $N\geq \frac{1}{\epsilon}$, then $\forall n\geq N,\frac{\overline{d}(x_n,
|
|||||||
|
|
||||||
We will use the topological space above to prove the following theorem.
|
We will use the topological space above to prove the following theorem.
|
||||||
|
|
||||||
#### Theorem for metrizable spaces
|
#### Urysohn metrization theorem
|
||||||
|
|
||||||
If $X$ is a regular and second countable topological space, then $X$ is metrizable.
|
If $X$ is a normal (regular and second countable) topological space, then $X$ is metrizable.
|
||||||
|
|
||||||
<details>
|
<details>
|
||||||
|
|
||||||
|
|||||||
120
content/Math4201/Math4201_L39.md
Normal file
120
content/Math4201/Math4201_L39.md
Normal file
@@ -0,0 +1,120 @@
|
|||||||
|
# Math4201 Topology I (Lecture 39)
|
||||||
|
|
||||||
|
## Separation Axioms
|
||||||
|
|
||||||
|
### Embedding manifolds
|
||||||
|
|
||||||
|
A $d$ dimensional manifold is the topological space satisfying the following three properties:
|
||||||
|
|
||||||
|
1. Haudorff property ($\forall x,y\in X, \exists U,V\in \mathcal{T}_X$ such that $x\in U\cap V$ and $y\notin U\cap V$)
|
||||||
|
2. Second countable property ($\exists \mathcal{B}\subseteq \mathcal{T}_X$ such that $\mathcal{B}$ is a basis for $X$ and $\mathcal{B}$ is countable)
|
||||||
|
3. Local homeomorphism to $\mathbb{R}^d$ ($\forall x\in M$, there is a neighborhood $U$ of $x$ such that $U$ is homeomorphic to $\mathbb{R}^d$. $\varphi:U\to \mathbb{R}^d$ is bijective, continuous, and open)
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary> Example of manifold</summary>
|
||||||
|
|
||||||
|
$\mathbb{R}^d$ is a $d$-dimensional manifold. And any open subspace of $\mathbb{R}^d$ is also a manifold.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
$S^1$ is a $1$-dimensional manifold.
|
||||||
|
|
||||||
|
---
|
||||||
|
|
||||||
|
$T=\mathbb{R}^2/\mathbb{Z}^2$ is a $2$-dimensional manifold.
|
||||||
|
|
||||||
|
</details>
|
||||||
|
|
||||||
|
Recall the [Urysohn metirzation theorem](./Math4201_L38.md/#urysohn-metirzation-theorem). Any normal and second countable space is metrizable.
|
||||||
|
|
||||||
|
In the proof we saw that any such space can be embedded into $\mathbb{R}^\omega$ with the product topology.
|
||||||
|
|
||||||
|
Question: What topological space can be embedded into $\mathbb{R}^n$ with the product topology?
|
||||||
|
|
||||||
|
#### Theorem for embedding compact manifolds into $\mathbb{R}^n$
|
||||||
|
|
||||||
|
Any $d$-dimensional (compact, this assumption makes the proof easier) manifold can be embedded into $\mathbb{R}^n$ with the product topology.
|
||||||
|
|
||||||
|
#### Definition for support of function
|
||||||
|
|
||||||
|
$\operatorname{supp}(f)=f^{-1}(\mathbb{R}-\{0\})$
|
||||||
|
|
||||||
|
#### Definition for partition of unity
|
||||||
|
|
||||||
|
Let $\{U_i\}_{i=1}^n$ be an open covering of $X$. A partition of unity for $X$ dominated by $\{U_i\}_{i=1}^n$ is a set of functions $\phi_i:X\to\mathbb{R}$ such that:
|
||||||
|
|
||||||
|
1. $\operatorname{supp}(\phi_i)\subseteq U_i$
|
||||||
|
2. $\sum_{i=1}^n \phi_i(x)=1$ for all $x\in X$
|
||||||
|
|
||||||
|
#### Theorem for existence of partition of unity
|
||||||
|
|
||||||
|
Let $X$ be a normal space and $\{U_i\}_{i=1}^n$ is an open covering of $X$. Then there is a partition of unity dominated by $\{U_i\}_{i=1}^n$.
|
||||||
|
|
||||||
|
Proof uses Urysohn's lemma.
|
||||||
|
|
||||||
|
<details>
|
||||||
|
<summary>Proof for embedding compact manifolds</summary>
|
||||||
|
|
||||||
|
Let $M$ be a compact manifold.
|
||||||
|
|
||||||
|
For any point $x\in M$, there is an open neighborhood $U_x$ of $x$ such that $U_x$ is homeomorphic to $\mathbb{R}^d$.
|
||||||
|
|
||||||
|
Let $\{U_x\}_{x\in M}$ be an open cover of $M$.
|
||||||
|
|
||||||
|
Since $M$ is compact, $\{U_x\}_{x\in M}$ has a finite subcover.
|
||||||
|
|
||||||
|
then $\{U_{x_i}\}_{i=1}^n$ is an open cover of $M$.
|
||||||
|
|
||||||
|
Therefore $F_i:U_{x_i}\to \mathbb{R}^d$ is a homeomorphism.
|
||||||
|
|
||||||
|
Since $M$ is compact and second countable, $M$ is normal.
|
||||||
|
|
||||||
|
Then there sis a partition of unity $\{\phi_i:X\to \mathbb{R}\}_{i=1}^n$ for $M$ with support by $\{U_{x_i}\}_{i=1}^n$ dominated by $\{U_{x_i}\}_{i=1}^n$. Where
|
||||||
|
|
||||||
|
- $\sum_{i=1}^n \phi_i(x)=1$
|
||||||
|
- $\operatorname{supp}(\phi_i)\subseteq U_{x_i}$
|
||||||
|
|
||||||
|
Define $\Psi:X\to \mathbb{R}^d$ as
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Psi_i(x)=\begin{cases}
|
||||||
|
\phi_i(x)F_i(x) & \text{if } x\in U_{x_i} \\
|
||||||
|
0 & x\in X-\operatorname{supp}(\phi_i)
|
||||||
|
\end{cases}
|
||||||
|
$$
|
||||||
|
|
||||||
|
Note that $\operatorname{supp}(\phi_i)\subseteq U_{x_i}$, this implies that $(X-\operatorname{supp}(\phi_i))\cup U_{x_i}=X$.
|
||||||
|
|
||||||
|
$U_{x_i}\cap (X-\operatorname{supp}(\phi_i))= U_i-\operatorname{supp}(\phi_i)$
|
||||||
|
|
||||||
|
In particualr, for any $x$ in the intersection, $\phi_i(x)=0\implies \phi_i(x)F_i(x)=0$.
|
||||||
|
|
||||||
|
So on the overlap, $\phi_i(x)F_i(x)=0$ and hence $\Psi_i$ is well defined.
|
||||||
|
|
||||||
|
Define $\Phi:X\to \mathbb{R}\times \dots \times \mathbb{R}\times \mathbb{R}^d\times \dots \times \mathbb{R}^d\cong \mathbb{R}^{(1+d)n}$ as
|
||||||
|
|
||||||
|
$$
|
||||||
|
\Phi(x)=(\phi_1(x),\dots,\phi_n(x),\Psi_1(x),\dots,\Psi_n(x))
|
||||||
|
$$
|
||||||
|
|
||||||
|
This is continuous because $\phi_i(x)$ and $\Psi_i(x)$ are continuous.
|
||||||
|
|
||||||
|
Since $M$ is compact, we just need to show that $\Phi$ is one-to-one to verify that it is an embedding.
|
||||||
|
|
||||||
|
Let $\Phi(x)=\Phi(x')$, then $\forall i,\phi_i(x)=\phi_i(x')$, and $\forall i,\Psi_i(x)=\Psi_i(x')$.
|
||||||
|
|
||||||
|
Since $\sum_{i=1}^n \phi_i(x)=1$, $\exists i$ such that $\phi_i(x)\neq 0$, therefore $x\in U_{x_i}$.
|
||||||
|
|
||||||
|
Since $\phi_i(x)=\phi_i(x')$, then $x'\in U_{x_i}$.
|
||||||
|
|
||||||
|
This implies that $\Psi_i(x)=\Psi_i(x')$, $\phi_i(x)F_i(x)=\phi_i(x')F_i(x')$.
|
||||||
|
|
||||||
|
So $F_i(x)=F_i(x')$ since $F_i$ is a homeomorphism.
|
||||||
|
|
||||||
|
This implies that $x=x'$.
|
||||||
|
|
||||||
|
So $\Phi$ is one-to-one, it is injective.
|
||||||
|
|
||||||
|
Therefore $\Phi$ is an embedding.
|
||||||
|
|
||||||
|
</details>
|
||||||
@@ -42,4 +42,5 @@ export default {
|
|||||||
Math4201_L36: "Topology I (Lecture 36)",
|
Math4201_L36: "Topology I (Lecture 36)",
|
||||||
Math4201_L37: "Topology I (Lecture 37)",
|
Math4201_L37: "Topology I (Lecture 37)",
|
||||||
Math4201_L38: "Topology I (Lecture 38)",
|
Math4201_L38: "Topology I (Lecture 38)",
|
||||||
|
Math4201_L39: "Topology I (Lecture 39)",
|
||||||
}
|
}
|
||||||
|
|||||||
Reference in New Issue
Block a user