diff --git a/content/Math4302/Math4302_L13.md b/content/Math4302/Math4302_L13.md index 4d80409..e49524b 100644 --- a/content/Math4302/Math4302_L13.md +++ b/content/Math4302/Math4302_L13.md @@ -1,2 +1,143 @@ # Math4302 Modern Algebra (Lecture 13) +## Groups + +### Cosets + +Last time we see that (left coset) $a\sim b$ (to differentiate from right coset, we may denote it as $a\sim_L b$) by $a^{-1}b\in H$ defines an equivalence relation. + +#### Definition of Equivalence Class + +Let $a\in H$, and the equivalence class containing $a$ is defined as: + +$$ +aH=\{x|a\simeq x\}=\{x|a^{-1}x\in H\}=\{x|x=ah\text{ for some }h\in H\} +$$. + +#### Properties of Equivalence Class + +$aH=bH$ if and only if $a\sim b$. + +
+Proof + +If $aH=bH$, then since $a\in aH, a\in bH$, then for some $h$, $a=bh$, since $b^{-1}a\in H$, so $a^{-1}b\in H$, therefore $a\simeq b$. + +If $a\sim b$, then $aH\subseteq bH$, since anything in $aH$ is related to $a$, therefore it is related to $b$ so $a\in bH$. + +$bH\subseteq aH$, apply the reflexive property for equivalence relation, therefore $b\in aH$. + +So $aH=bH$. + +
+ +If $aH\cap bH\neq \emptyset$, then $aH=bH$. + +
+Proof +If $x\in aH\cap bH$, then $x\sim a$ and $x\sim b$, so $a\sim b$, so $aH=bH$. + +
+ +$aH=H$ if and only if $a\in H$. + +
+Proof +$aH=eH$ if and only if $a\sim e$, if and only if $a\in H$. + +
+ +$aH$ is called **left coset** of $a$ in $H$. + +
+Examples + +Consider $G=S_3=\{e,\rho,\rho^2,\tau_1,\tau_2,\tau_3\}$. + +where $\rho=(123),\rho^2=(132),\tau_1=(12),\tau_2=(23),\tau_3=(13)$. + +$H=\{e,\rho,\rho^2\}$. + +All the left coset for $H$ is $H=eH=\rho H=\rho^2H$. + +$$ +\tau_1\rho=(23)=\tau_2\\ +\tau_1\rho^2=(13)=\tau_3\\ +\tau_2\rho=(31)=\tau_3\\ +\tau_2\rho^2=(12)=\tau_1 +\tau_3\rho=(12)=\tau_1\\ +\tau_3\rho^2=(23)=\tau_2 +$$ + +$$ +\tau_1H=\{\tau_1,\tau_2,\tau_3\}=\tau_2H=\tau_3H\\ +$$ + +--- + +Consider $G=\mathbb{Z}$ with $H=5\mathbb{Z}$. + +We have 5 cosets, $H,1+H,2+H,3+H,4+H$. + +
+ +#### Lemma for size of cosets + +Any coset of $H$ has the same cardinality as $H$. + +Define $\phi:H\to aH$ by $\phi(h)=ah$. + +$\phi$ is an bijection, if $ah=ah'\implies h=h'$, it is onto by definition of $aH$. + +#### Corollary: Lagrange's Theorem + +If $G$ is a finite group, and $H\leq G$, then $|H|\big\vert |G|$. (size of $H$ divides size of $G$) + +
+Proof + +Suppose $H$ has $r$ distinct cosets, then $|G|=r|H|$, so $|H|$ divides $|G|$. + +
+ +#### Corollary for Lagrange's Theorem + +If $|G|=p$, where $p$ is a prime number, then $G$ is cyclic. + +
+Proof + +Prick $e\neq a\in G$, let $H=\langle a\rangle \leq G$, then $|H|$ divides $|G|$, since $p$ is prime, then $|H|=|G|$, so $G=\langle a \rangle$. + +
+ +If $G$ is finite and $a\in G$, then $\operatorname{ord}(a)\big\vert|G|$. + +
+Proof + +Since $\operatorname{ord}(a)=|\langle a\rangle|$, and $\langle a\rangle $ is a subgroup, so $\operatorname{ord}(a)\big\vert|G|$. + +
+ +#### Definition of index + +Suppose $H\leq G$, the number of distinct left cosets of $H$ is called the index of $H$ in $G$. Notation is $(G:H)$. + +#### Definition of right coset + +Suppose $H\leq G$, define the equivalence relation by $a\sim 'b$ (or $a\sim_R b$ in some textbook) if $a b^{-1}\in H$. (note the in left coset, we use $a^{-1}b \in H$, or equivalently $b^{-1}a \in H$, these are different equivalence relations) + +The equivalent class is defined + +$$ +Ha=\{x\in G|x\sim'a\}=\{x\in G|xa^{-1}\in H\}=\{x|x=ha\text{ for some }h\in H\} +$$ + +Some properties are the same as the left coset + +- $Ha=H\iff a\in H$ +- $Ha=Hb$ if and only if $a\sim'b\iff a b^{-1}\in H$. +- $Ha\cap Hb\neq \emptyset\iff Ha=Hb$. + +Some exercises: Find all the left and right cosets of $G=S_3$, there should be 2 left cosets and 2 right cosets (giving different partition of $G$).