From c51226328c075a21bbc3d3861bdea45b9c1261df Mon Sep 17 00:00:00 2001 From: Trance-0 <60459821+Trance-0@users.noreply.github.com> Date: Fri, 30 Jan 2026 11:51:21 -0600 Subject: [PATCH] updates --- content/Math4202/Math4202_L7.md | 6 +-- content/Math4202/Math4202_L8.md | 88 +++++++++++++++++++++++++++++++++ content/Math4202/_meta.js | 1 + 3 files changed, 92 insertions(+), 3 deletions(-) create mode 100644 content/Math4202/Math4202_L8.md diff --git a/content/Math4202/Math4202_L7.md b/content/Math4202/Math4202_L7.md index e8b32db..7103d53 100644 --- a/content/Math4202/Math4202_L7.md +++ b/content/Math4202/Math4202_L7.md @@ -1,4 +1,4 @@ -# Math4202 Topology II (Lecture 6) +# Math4202 Topology II (Lecture 7) ## Algebraic Topology @@ -57,7 +57,7 @@ If $f:X\to Y$ is homotopy to a constant map. $f$ is called null homotopy. Let $f,f':I\to X$ be a continuous maps from an interval $I=[0,1]$ to a topological space $X$. -Two pathes $f$ and $f'$ are path homotopic if +Two pathes $f$ and $f'$ are path homotopic if - there exists a continuous map $F:I\times [0,1]\to X$ such that $F(i,0)=f(i)$ and $F(i,1)=f'(i)$ for all $i\in I$. -- $f(0)=f'(0)$ and $f(1)=f'(1)$. \ No newline at end of file +- $F(s,0)=f(0)$ and $F(s,1)=f(1)$, $\forall s\in I$. \ No newline at end of file diff --git a/content/Math4202/Math4202_L8.md b/content/Math4202/Math4202_L8.md new file mode 100644 index 0000000..96f189c --- /dev/null +++ b/content/Math4202/Math4202_L8.md @@ -0,0 +1,88 @@ +# Math4202 Topology II (Lecture 8) + +## Algebraic Topology + +### Path homotopy + +#### Recall definition of path homotopy + +Let $f,f':I\to X$ be a continuous maps from an interval $I=[0,1]$ to a topological space $X$. + +Two pathes $f$ and $f'$ are path homotopic if + +- there exists a continuous map $F:I\times [0,1]\to X$ such that $F(i,0)=f(i)$ and $F(i,1)=f'(i)$ for all $i\in I$. +- $F(s,0)=f(0)$ and $F(s,1)=f(1)$, $\forall s\in I$.$F(s,0)=f(0)$ and $F(s,1)=f(1)$, $\forall s\in I$ + +#### Lemma: Homotopy defines an equivalence relation + +The $\simeq$, $\simeq_p$ are both equivalence relations. + +
+Proof + +**Reflexive**: + +$f:I\to X$, $F:I\times I\to X$, $F(s,t)=f(s)$. + +$F$ is a homotopy between $f$ and $f$ itself. + +**Symmetric**: + +Suppose $f,g:I\to X$, + +$F:I\times I\to X$ is a homotopy between $f$ and $g$. + +Let $H: I\times I\to X$ be a homotopy between $g$ and $f$ defined as follows: + +$H(s,t)=F(s,1-t)$. + +$H(s,0)=F(s,1)=g(s)$, $H(s,1)=F(s,0)=f(s)$. + +Therefore $H$ is a homotopy between $g$ and $f$. + +**Transitive**: + +Suppose we have $f\simeq_p g$ with homotopy $F_1$, and $g\simeq_p h$ with homotopy $F_2$. + +Then we can glue the two homotopies together to get a homotopy $F$ between $f$ and $h$ using pasting lemma. + +$F(s,t)=(F_1*F_2)(s,t)\coloneqq\begin{cases} +F_1(s,2t), & t\in [0,\frac{1}{2}]\\ +F_2(s,2t-1), & t\in [\frac{1}{2},1] +\end{cases}$ + +Therefore $f\simeq_p h$ with homotopy $F$. + +
+ +> [!NOTE] +> +> We use $[x]$ to denote the equivalence class of $x$. + +
+Example of equivalence classes in path homotopy + +Let $X=\{pt\}$, $\operatorname{Path}(X)=\{\text{constant map}\}$.$\operatorname{Path}/_{\simeq_p}(X)=\{[\text{constant map}]\}$. + +--- + +$X=\{p,q\}$ with discrete topology, $\operatorname{Path}(X)=\{f_{p},f_{q}\}$.$\operatorname{Path}/_{\simeq_p}(X)=\{[f_{p}], [f_{q}]\}$ + +This applied to all discrete topological spaces. + +--- + +Let $X=\mathbb{R}$ with standard topology. + +$\operatorname{Path}(X)=\{f:[0,1]\to \mathbb{R}\in C^0\}$ + +Let $f_1,f_2:[0,1]\to \mathbb{R}$ where $f_1(0)=f_2(0)$, $f_1(1)=f_2(1)$. + +Then we can construct a homotopy between $f_1$ and $f_2$. + +$F:[0,1]\times [0,1]\to \mathbb{R}$, $F(s,t)=(1-t)f_1(s)+tf_2(s)$ is a homotopy between $f_1$ and $f_2$. + +$\operatorname{Path}/_{\simeq_p}(X)=\{(x_1,x_1)|x_1,x_2\in \mathbb{R}\}$ + +This applies to any convex space $V$ in $\mathbb{R}^n$. +
diff --git a/content/Math4202/_meta.js b/content/Math4202/_meta.js index 349f627..81b9a64 100644 --- a/content/Math4202/_meta.js +++ b/content/Math4202/_meta.js @@ -10,4 +10,5 @@ export default { Math4202_L5: "Topology II (Lecture 5)", Math4202_L6: "Topology II (Lecture 6)", Math4202_L7: "Topology II (Lecture 7)", + Math4202_L8: "Topology II (Lecture 8)", }