Update Math416_L23.md
This commit is contained in:
@@ -86,4 +86,84 @@ QED
|
||||
|
||||
### Homotopy
|
||||
|
||||
Suppose $\gamma_0, \gamma_1$ are two curves from
|
||||
$[0,1]$ to $\Omega$ with same end points $P,Q$.
|
||||
|
||||
A homotopy is a continuous function of curves $\gamma_t, 0\leq t\leq 1$, deforming $\gamma_0$ to $\gamma_1$, keeping the end points fixed.
|
||||
|
||||
Formally, if $H:[0,1]\times [0,1]\to \Omega$ is a continuous function satsifying
|
||||
|
||||
1. $H(s,0)=\gamma_0(s)$, $\forall s\in [0,1]$
|
||||
2. $H(s,1)=\gamma_1(s)$, $\forall s\in [0,1]$
|
||||
3. $H(0,t)=P$, $\forall t\in [0,1]$
|
||||
4. $H(1,t)=Q$, $\forall t\in [0,1]$
|
||||
|
||||
Then we say $H$ is a homotopy between $\gamma_0$ and $\gamma_1$. (If $\gamma_0$ and $\gamma_1$ are closed curves, $Q=P$)
|
||||
|
||||
#### Lemma 9.12 Technical Lemma
|
||||
|
||||
Let $\phi:[0,1]\times [0,1]\to \mathbb{C}\setminus \{0\}$ is continuous. Then there exists a continuous map $\psi:[0,1]\times [0,1]\to \mathbb{C}$ such that $e^\phi=\psi$. Moreover, $\psi$ is unique up to an additive constant in $2\pi i\mathbb{Z}$.
|
||||
|
||||
Proof:
|
||||
|
||||
Let $\phi_t(s)=\phi(s,t)$, $0\leq t\leq 1$.
|
||||
|
||||
Then $\exists \psi_{00}$ such that $e^{\psi_{00}(s)}=\phi(0,t)$.
|
||||
|
||||
$\exists \psi_{t}(s)$ such that $e^{\psi_{t}(s)}=\phi_t(s)$.
|
||||
|
||||
We want to show $\psi_t(s)$ is continuous in $t$.
|
||||
|
||||
Since $\exists \epsilon>0$ such that $\phi(s,t)$ is at least $\epsilon$ away from $0$ for all $s\in [0,1]$ and $t\in [0,1]$.
|
||||
|
||||
Moreover, $\phi(s,t)$ is uniformly continuous.
|
||||
|
||||
So $\exists \delta>0$ such that $|\phi(s,t)-\phi(s,t_0)|<\epsilon$ if $|t-t_0|<\delta$.
|
||||
|
||||
Therefore,
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\left|\frac{\phi(s,t)}{\phi(s,t_0)}-1\right|&<\frac{\epsilon}{\phi(s,t_0)}
|
||||
&<1
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
So $\text {Re} \frac{\phi(s,t)}{\phi(s,t_0)}>0$.
|
||||
|
||||
Therefore, $\text{Log} \frac{\phi(s,t)}{\phi(s,t_0)}=\chi(s,t)$ is continuous on $s\in [0,1], t\in [t_0-\delta, t_0+\delta]$.
|
||||
|
||||
So $e^{\chi(s,t)}=\frac{\phi(s,t)}{\phi(s,t_0)}$, $\chi(s,t_0)=0,\forall s\in [0,1]$
|
||||
|
||||
Define $\tilde{\psi}(s,t)=\chi(s,t)+\chi(s,t_0)$. So this function is continuous.
|
||||
|
||||
And $e^{\tilde{\psi}(s,t)}=e^{\chi(s,t)+\chi(s,t_0)}=e^{\chi(s,t)}\cdot e^{\chi(s,t_0)}=\phi(s,t)$.
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\tilde{\psi}(0,t_0)&=\chi(0,t_0)+\psi(0,t_0) \\
|
||||
&=0+\psi_{00}(t_0) \\
|
||||
&=\psi_{00}(t_0)
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
$\tilde{\psi}(s,0)$ and $\psi(t,0)$ on $t\in[t_0-\delta, t_0+\delta]$ are both logs of the same function, and agree to each other on $t_0$.
|
||||
|
||||
Therefore, $\tilde{\psi}(s,0)=\psi(s,0)+\text{const}$
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
QED
|
||||
|
||||
#### Theorem 9.13 Cauchy's Theorem for Homotopic Curves
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
Reference in New Issue
Block a user