fix jenkinfile errors
This commit is contained in:
2
Jenkinsfile
vendored
2
Jenkinsfile
vendored
@@ -40,5 +40,3 @@ pipeline {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
}
|
|
||||||
|
|||||||
@@ -31,3 +31,35 @@ $$
|
|||||||
|
|
||||||
We allow for $A-\infty = -\infty$ and $A+\infty = \infty$ for any $A\in \mathbb{R}$. But not $\infty-\infty$.
|
We allow for $A-\infty = -\infty$ and $A+\infty = \infty$ for any $A\in \mathbb{R}$. But not $\infty-\infty$.
|
||||||
|
|
||||||
|
#### Immediate Properties of Lebesgue Integral
|
||||||
|
|
||||||
|
If $f$ is measurable and $m(E)=0$, then $\int_E f \, dm = 0$.
|
||||||
|
|
||||||
|
If $E=E_1\cup E_2$ and $E_1\cap E_2=\emptyset$, then $\int_E f \, dm = \int_{E_1} f \, dm + \int_{E_2} f \, dm$.
|
||||||
|
|
||||||
|
#### Corollary
|
||||||
|
|
||||||
|
If $f\leq g$ almost everywhere, ($f\leq g$ except for a set of measure 0), then $\int_E f \, dm \leq \int_E g \, dm$.
|
||||||
|
|
||||||
|
Proof:
|
||||||
|
|
||||||
|
Let $F=\{x\in E: f(x)>g(x)\}$. Then $m(F)=0$.
|
||||||
|
|
||||||
|
$$
|
||||||
|
\begin{aligned}
|
||||||
|
\int_E f \, dm &= \int_{E\setminus F} f \, dm + \int_F f \, dm\\
|
||||||
|
&\leq \int_{E\setminus F} g \, dm
|
||||||
|
\end{aligned}
|
||||||
|
$$
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
QED
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user