diff --git a/pages/Math416/Math416_L3.md b/pages/Math416/Math416_L3.md index fb989bb..e730b9d 100644 --- a/pages/Math416/Math416_L3.md +++ b/pages/Math416/Math416_L3.md @@ -71,7 +71,7 @@ And $u$ and $v$ have continuous partial derivatives at $(x_0,y_0)$. And let $c=\frac{\partial u}{\partial x}(x_0,y_0)$ and $d=\frac{\partial v}{\partial x}(x_0,y_0)$. -Then $f'(\zeta_0)=c+id$. +**Then $f'(\zeta_0)=c+id$, is holomorphic at $\zeta_0$.** ### Holomorphic Functions diff --git a/pages/Math416/Math416_L4.md b/pages/Math416/Math416_L4.md new file mode 100644 index 0000000..0da316b --- /dev/null +++ b/pages/Math416/Math416_L4.md @@ -0,0 +1,246 @@ +# Lecture 4 + +## Review + +### Derivative of a complex function + +$$ +\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right) +$$ + +$$ +\frac{\partial f}{\partial \bar{z}}=\frac{1}{2}\left(\frac{\partial f}{\partial x}+\frac{\partial f}{\partial y}\right) +$$ + +### Angle between two curves + +Let $\gamma_1,\gamma_2$ be two curves in $G\subset \mathbb{C}$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$. + +The angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the angle between the vectors $\gamma_1'(t_0)$ and $\gamma_2'(t_0)$. Denote as $\arg(\gamma_2'(t_0))-\arg(\gamma_1'(t_0))=\arg(\gamma_2'(t_0)\gamma_1'(t_0))$. + +### Cauchy-Riemann equations + +$$ +\frac{\partial f}{\partial z}=\frac{1}{2}\left(\frac{\partial f}{\partial x}-\frac{\partial f}{\partial y}\right) +$$ + +## Continue on last lecture + +### Theorem of conformality + +Suppose $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$. + +If $f'(\zeta_0)\neq 0$, then the angle between $\gamma_1$ and $\gamma_2$ at $\zeta_0$ is the same as the angle between the vectors $f'(\zeta_0)\gamma_1'(t_0)$ and $f'(\zeta_0)\gamma_2'(t_0)$. + +### Lemma of function of a curve and angle + +If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma$ is differentiable curve in $G$ with $\gamma(t_0)=\zeta_0$ for some $t_0\in I$. + +Then, + +$$ +(f\circ \gamma)'(t_0)=f'(\gamma(t_0))\gamma'(t_0). +$$ + +> Looks like the chain rule. + +Proof: + +We want to show that + +$$ +\lim_{t\to t_0}\frac{(f\circ \gamma)(t)-(f\circ \gamma)(t_0)}{t-t_0}=f'(\gamma(t_0))\gamma'(t_0). +$$ + +> Notation: +> +> A function $g(h)$ is $O(h)$ if $\exists C>0$ such that $|g(h)|\leq C|h|$ for all $h$ in a neighborhood of $0$. +> +> A function $g(h)$ is $o(h)$ if $\lim_{h\to 0}\frac{g(h)}{h}=0$. +> +> +> $f$ is differentiable if and only if $f(z+h)=f(z)+f'(z)h+\frac{1}{2}h^2f''(z)+o(h^3)$ as $h\to 0$. + + + +Since $f$ is holomorphic at $\gamma(t_0)=\zeta_0$, we have + +$$ +f(\zeta_0)=f(\zeta_0)+(\zeta-\zeta_0)f'(\zeta_0)+o(\zeta-\zeta_0) +$$ + +and + +$$ +f(\gamma(t_0))=f(\gamma(t_0))+f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0)) +$$ + +So, + +$$ +\begin{aligned} +\lim_{t\to t_0}\frac{(f\circ \gamma)(t)-(f\circ \gamma)(t_0)}{t-t_0} +&=\lim_{t\to t_0}\frac{\left[f(\gamma(t_0))+f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))\right]-f(\gamma(t_0))}{t-t_0} \\ +&=\lim_{t\to t_0}\frac{f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))+o(\gamma(t)-\gamma(t_0))}{t-t_0} \\ +&=\lim_{t\to t_0}\frac{f'(\gamma(t_0))(\gamma(t)-\gamma(t_0))}{t-t_0} +\lim_{t\to t_0}\frac{o(\gamma(t)-\gamma(t_0))}{t-t_0} \\ +&=f'(\gamma(t_0))\lim_{t\to t_0}\frac{\gamma(t)-\gamma(t_0)}{t-t_0} +0\\ +&=f'(\gamma(t_0))\gamma'(t_0) +\end{aligned} +$$ + +EOP + +#### Definition of conformal function + +A function $f:G\to \mathbb{C}$ is called conformal if it preserves the angle between two curves. + +#### Theorem of conformal function + +If $f:G\to \mathbb{C}$ is holomorphic function on open set $G\subset \mathbb{C}$ and $\gamma_1,\gamma_2$ are regular curves in $G$ with $\gamma_1(t_0)=\gamma_2(t_0)=\zeta_0$ for some $t_0\in I_1\cap I_2$, and $f'(\zeta_0)\neq 0$, then $f$ is conformal at $\zeta_0$. + +Example: + +$$ +f(z)=z^2 +$$ + +is not conformal at $z=0$ because $f'(0)=0$. + + + +#### Lemma of conformal function + +Suppose $f$ is real differentiable, let $a=\frac{\partial f}{\partial \zeta}(\zeta_0)$, $b=\frac{\partial f}{\partial \overline{\zeta}}(\zeta_0)$. + +Let $\gamma(t_0)=\zeta_0$. Then $(f\circ \gamma)'(t_0)=a\gamma'(t_0)+b\overline{\gamma'(t_0)}$. + +Proof: + +$f=u+iv$, $u,v$ are real differentiable. + +$$ +a=\frac{\partial f}{\partial \zeta}=\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right) +$$ + +$$ +b=\frac{\partial f}{\partial \overline{\zeta}}=\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right) +$$ + +$$ +\gamma'(t_0)=\frac{d\alpha}{dt}+i\frac{d\beta}{dt} +$$ + +$$ +\overline{\gamma'(t_0)}=\frac{d\beta}{dt}-i\frac{d\alpha}{dt} +$$ + +$$ +\begin{aligned} +(f\circ \gamma)'(t_0)&=\frac{\partial f}{\partial \zeta}(\gamma(t_0))\gamma'(t_0)+\frac{\partial f}{\partial \overline{\zeta}}(\gamma(t_0))\overline{\gamma'(t_0)} \\ +&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\alpha}{dt}+i\frac{d\beta}{dt}\right)\\ +&+\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}-\frac{\partial v}{\partial y}\right)+i\frac{1}{2}\left(\frac{\partial v}{\partial x}+\frac{\partial u}{\partial y}\right)\right]\left(\frac{d\beta}{dt}-i\frac{d\alpha}{dt}\right) \\ +&=\left[\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\alpha}{dt}-\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\beta}{dt}\right]\\ +&+i\left[\frac{1}{2}\left(\frac{\partial v}{\partial x}-\frac{\partial u}{\partial y}\right)\frac{d\alpha}{dt}+\frac{1}{2}\left(\frac{\partial u}{\partial x}+\frac{\partial v}{\partial y}\right)\frac{d\beta}{dt}\right] \\ +&=\left[a+b\right]\frac{d\alpha}{dt}+i\left[a-b\right]\frac{d\beta}{dt} \\ +&=\left[u_x+iv_x\right]\frac{d\alpha}{dt}+i\left[v_y-iu_y\right]\frac{d\beta}{dt} \\ +&=a\gamma'(t_0)+b\overline{\gamma'(t_0)} +\end{aligned} +$$ + +EOP + +#### Theorem of differentiability + +Let $f:G\to \mathbb{C}$ be holomorphic function on open set $G\subset \mathbb{C}$ and real differentiable. $f=u+iv$ where $u,v$ are real differentiable functions. + +Then, $f$ is conformal if and only if $f$ is holomorphic at $\zeta_0$ and $f'(\zeta_0)\neq 0,\forall \zeta_0\in G$. + +Proof: + + + +Case 1: Suppose $f(\zeta)=a\zeta+b\overline{\zeta}$, Let $b=\frac{\partial f}{\partial \overline{z}}(\zeta)$. We need to prove $a+b\neq 0$. So we want $b=0$ and $a\neq 0$, other wise $f(\mathbb{R})=0$. + +$f:\mathbb{R}\to \{(a+b)t\}$ is not conformal. + +... + +Case 2: Immediate consequence of the lemma of conformal function. + +EOP + +### Harmonic function + +Let $\Omega$ be a domain in $\mathbb{C}$. A function $u:\Omega\to \mathbb{R}$ + +> A domain is a connected open set. + +Say $g:\Omega\to \mathbb{R} \text{ or } \mathbb{C}$ is harmonic if it satisfies the Laplace equation + +$$ +\Delta g=\frac{\partial^2 g}{\partial x^2}+\frac{\partial^2 g}{\partial y^2}=0. +$$ + +#### Theorem of harmonic conjugate + +Let $f=u+iv$ be holomorphic function on domain $\Omega\subset \mathbb{C}$. Then $u$ and $v$ are harmonic functions on $\Omega$. + +Proof: + +$$ +\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=0. +$$ + +Using the Cauchy-Riemann equations, we have + +$$ +\frac{\partial^2 u}{\partial x^2}=\frac{\partial^2 v}{\partial x\partial y}, \quad \frac{\partial^2 u}{\partial y^2}=-\frac{\partial^2 v}{\partial y\partial x}. +$$ + +So, + +$$ +\Delta u=\frac{\partial^2 u}{\partial x^2}+\frac{\partial^2 u}{\partial y^2}=\frac{\partial^2 v}{\partial x\partial y}-\frac{\partial^2 v}{\partial y\partial x}=0. +$$ + +EOP + +If $v$ is such that $f=u+iv$ is holomorphic on $\Omega$, then $v$ is called harmonic conjugate of $u$ on $\Omega$. + +Example: + +$$ +u(x,y)=x^2-y^2 +$$ + +is harmonic on $\mathbb{C}$. + +To find a harmonic conjugate of $u$ on $\mathbb{C}$, we need to find a function $v$ such that + +$$ +\frac{\partial v}{\partial x}=-\frac{\partial u}{\partial y}=2y, \quad \frac{\partial v}{\partial y}=\frac{\partial u}{\partial x}=2x. +$$ + +Integrating, we get + +$$ +v(x,y)=2xy+G(y) +$$ + +$$ +\frac{\partial v}{\partial y}=2x+G'(y)=2x +$$ + +So, + +$$ +G'(y)=0 \implies G(y)=C +$$ + +$$ +v(x,y)=2xy+C +$$ + +is a harmonic conjugate of $u$ on $\mathbb{C}$. + +Combine $u$ and $v$ to get $f(x,y)=x^2-y^2+2xyi+C=(x+iy)^2+C=z^2+C$, which is holomorphic on $\mathbb{C}$. diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index 902316c..a1fc1b3 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -6,4 +6,5 @@ export default { Math416_L1: "Complex Variables (Lecture 1)", Math416_L2: "Complex Variables (Lecture 2)", Math416_L3: "Complex Variables (Lecture 3)", + Math416_L4: "Complex Variables (Lecture 4)", }