diff --git a/pages/Math4121/Math4121_L37.md b/pages/Math4121/Math4121_L37.md index 1772892..bd309ce 100644 --- a/pages/Math4121/Math4121_L37.md +++ b/pages/Math4121/Math4121_L37.md @@ -41,7 +41,7 @@ For the general case, By the Monotone Convergence Theorem (use $|f|\chi_{[-N,N]}$ to approximate $|f|$), we can find $N$ large such that $$ -\int_{E_N^c}|f|dm<\frac{\epsilon}{2} +\int_{E_N^c}|f|dm<\frac{\epsilon}{3} $$ where $E_N=E\cap [-N,N]$. @@ -54,8 +54,72 @@ $$ \int_{E_N} |f-\phi|dm<\frac{\epsilon}{3} $$ +For each $i=1,2,\cdots,n$, we can find $g_i$ continuous such that +$$ +\int_{E}|\chi_{S_i}-g_i|dm<\frac{\epsilon}{3M} +$$ +where $M=\sum_{i=1}^n |\alpha_i|$. + +Take $g=\sum_{i=1}^n \alpha_i g_i$, + +$$ +\int_E |\phi-g|dm\leq \sum_{i=1}^n |\alpha_i|\int_E |g_i-\chi_{S_i}|dm<\frac{\epsilon}{3} +$$ + +$\phi-g=\sum_{i=1}^n \alpha_i (\chi_{S_i-g_i})$ + +All in all, + +$$ +\begin{aligned} +\int_E |f-g|dm&\leq \int_E|f-\phi|dm+\int_E |\phi-g|dm\\ +&=\int_{E_N^c}|f|dm+\int_E |f-\phi|dm+\int_E |\phi-g|dm\\ +&<\frac{\epsilon}{3}+\frac{\epsilon}{3}+\frac{\epsilon}{3}\\ +&=\epsilon +\end{aligned} +$$ QED +### Road map for proving the fundamental theorem of calculus in Lebesgue integration + +Recall the Riemann-Stieltjes integral: + +If $g\in \mathscr{R}(\alpha)$ on $[a,b]$, + +$G(x)=\int_a^x g d\alpha$, + +then: + +1. $G$ is continuous on $[a,b]$ +2. If $g$ is continuous at $x\in [a,b]$, then $G$ is differentiable at $x$ with $G'(x)=g(x)$. + +To extend this to the case where $g$ is Lebesgue integrable, we use the Hardy-Littlewood maximal function. + +#### Definition of the Hardy-Littlewood maximal function + +Given an interval $I\subseteq \mathbb{R}$, define the averaging operator $A_I f(x)=\frac{\chi_I(x)}{m(I)}\int_I f(x)dm$. + +(This function takes the average of $f$ over the interval $I$.) + +The Hardy-Littlewood maximal function is defined as: + +$$ +f^*(x)=\sup_{I\text{ is open interval}}A_I f(x) +$$ + +We will show that $f^*$ is not that such worse than $f$. (Prove on Wednesday) + +Relates to the Fundamental Theorem of Calculus in Lebesgue integration. + +$$ +\frac{G(x+h)-G(x)}{h}=\frac{1}{h}\int_x^{x+h} g(t)dt=A_{[x,x+h]}g(x) +$$ + +If we can control all the averages, we can control the function. + + + + diff --git a/pages/Math4121/Math4121_L38.md b/pages/Math4121/Math4121_L38.md new file mode 100644 index 0000000..e69de29 diff --git a/pages/Math4121/Math4121_L39.md b/pages/Math4121/Math4121_L39.md new file mode 100644 index 0000000..e69de29 diff --git a/pages/Math4121/_meta.js b/pages/Math4121/_meta.js index bacbe55..cba4edf 100644 --- a/pages/Math4121/_meta.js +++ b/pages/Math4121/_meta.js @@ -39,4 +39,8 @@ export default { Math4121_L33: "Introduction to Lebesgue Integration (Lecture 33)", Math4121_L34: "Introduction to Lebesgue Integration (Lecture 34)", Math4121_L35: "Introduction to Lebesgue Integration (Lecture 35)", + Math4121_L36: "Introduction to Lebesgue Integration (Lecture 36)", + Math4121_L37: "Introduction to Lebesgue Integration (Lecture 37)", + Math4121_L38: "Introduction to Lebesgue Integration (Lecture 38)", + Math4121_L39: "Introduction to Lebesgue Integration (Lecture 39)", } diff --git a/pages/Math416/Math416_L26.md b/pages/Math416/Math416_L26.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/pages/Math416/Math416_L26.md @@ -0,0 +1 @@ + diff --git a/pages/Math416/Math416_L27.md b/pages/Math416/Math416_L27.md new file mode 100644 index 0000000..8b13789 --- /dev/null +++ b/pages/Math416/Math416_L27.md @@ -0,0 +1 @@ + diff --git a/pages/Math416/_meta.js b/pages/Math416/_meta.js index 690c30d..7ea7114 100644 --- a/pages/Math416/_meta.js +++ b/pages/Math416/_meta.js @@ -29,4 +29,6 @@ export default { Math416_L23: "Complex Variables (Lecture 23)", Math416_L24: "Complex Variables (Lecture 24)", Math416_L25: "Complex Variables (Lecture 25)", + Math416_L26: "Complex Variables (Lecture 26)", + Math416_L27: "Complex Variables (Lecture 27)", }