updates
This commit is contained in:
2
content/Math4211/Math4211_L1.md
Normal file
2
content/Math4211/Math4211_L1.md
Normal file
@@ -0,0 +1,2 @@
|
||||
# Math4211 Lecture 1
|
||||
|
||||
7
content/Math4211/_meta.js
Normal file
7
content/Math4211/_meta.js
Normal file
@@ -0,0 +1,7 @@
|
||||
export default {
|
||||
index: "Course Description",
|
||||
"---":{
|
||||
type: 'separator'
|
||||
},
|
||||
Math4211_L1: "Topology I (Lecture 1)",
|
||||
}
|
||||
3
content/Math4211/index.md
Normal file
3
content/Math4211/index.md
Normal file
@@ -0,0 +1,3 @@
|
||||
# Math4211
|
||||
|
||||
Topology I
|
||||
60
content/Math4501/Math4501_L1.md
Normal file
60
content/Math4501/Math4501_L1.md
Normal file
@@ -0,0 +1,60 @@
|
||||
# Math4501 Lecture 1
|
||||
|
||||
In many practical problems (ODEs, PdEs, Sys of eqn)
|
||||
|
||||
closed-form analytical solutions are unknown.
|
||||
|
||||
-> resort ot computational algorithms (approximation)
|
||||
|
||||
For example,
|
||||
|
||||
Deep learning classifiers
|
||||
|
||||
**Root finding**
|
||||
|
||||
$$
|
||||
f(x)=\sum_{i=1}^n a_i x^i
|
||||
$$
|
||||
|
||||
for $n\geq 5$.
|
||||
|
||||
find all roots $x\in \mathbb{R}$ of $f(x)=0$.
|
||||
|
||||
**Investment**
|
||||
|
||||
Invest a dollars every month return with the rate $r$.
|
||||
|
||||
$g(r)=a\sum_{i=1}^n (1+r)^i=a\left[\frac{(1+r)^{n+1}-(1+r)}{r}\right]$
|
||||
|
||||
Say want $g(r)=b$ for some $b$.
|
||||
|
||||
$f(r)=a(1+n)^{n+1}-a(1+n)-br=0$
|
||||
|
||||
use Newton's method to find $r$ such that $f(r)=0$.
|
||||
|
||||
Since $f$ is non-linear, that is $f(x+y)\neq f(x)+f(y)$.
|
||||
|
||||
Let
|
||||
|
||||
$$
|
||||
f_1(x_1,\dots, x_m)=0\\
|
||||
\vdots\\
|
||||
f_m(x_1,\dots, x_m)=0
|
||||
$$
|
||||
|
||||
be a system of $m$ equations $\vec{f} \mathbb{R}^m \to \mathbb{R}^m$. and $f_1(\vec{x})=\vec{0}$.
|
||||
|
||||
If $\vec{f}$ is linear, note that
|
||||
|
||||
$$
|
||||
\begin{aligned}
|
||||
\vec{f}(\vec{x})&=\vec{f}(\begin{bmatrix}x_1\\ \vdots\\ x_m\end{bmatrix})\\
|
||||
&=\vec{f}(x_1\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix}+x_2\begin{bmatrix}0\\ 1\\ \vdots\\ 0\end{bmatrix}+\cdots+x_m\begin{bmatrix}0\\ 0\\ \vdots\\ 1\end{bmatrix})\\
|
||||
&=x_1\vec{f}(\begin{bmatrix}1\\ 0\\ \vdots\\ 0\end{bmatrix})+x_2\vec{f}(\begin{bmatrix}0\\ 1\\ \vdots\\ 0\end{bmatrix})+\cdots+x_m\vec{f}(\begin{bmatrix}0\\ 0\\ \vdots\\ 1\end{bmatrix})\\
|
||||
&=A\vec{x}
|
||||
\end{aligned}
|
||||
$$
|
||||
|
||||
where $\vec{e}_i$ is the $i$-th standard basis vector.
|
||||
|
||||
Gaussian elimination (LU factorization)
|
||||
@@ -41,6 +41,12 @@ export default {
|
||||
timestamp: true,
|
||||
}
|
||||
},
|
||||
Math4211: {
|
||||
type: 'page',
|
||||
theme:{
|
||||
timestamp: true,
|
||||
}
|
||||
},
|
||||
Math416: {
|
||||
type: 'page',
|
||||
theme:{
|
||||
|
||||
Reference in New Issue
Block a user