update typo and structures

This commit is contained in:
Trance-0
2024-12-16 13:41:24 -06:00
parent ce830c9943
commit d471db49c4
24 changed files with 328 additions and 219 deletions

View File

@@ -1,20 +1,23 @@
# Lecture 10
## Continue
## Chapter 2: Computational Hardness
### Discrete Log Assumption
### Discrete Log Assumption (Assumption 52.2)
This is collection of one-way functions
$$
p\gets \tilde\Pi_n(\textup{ safe primes }), p=2q+1
$$
$$
a\gets \mathbb{Z}*_{p};g=a^2(\textup{ make sure }g\neq 1)
$$
$$
f_{g,p}(x)=g^x\mod p
$$
$$
f:\mathbb{Z}_q\to \mathbb{Z}^*_p
$$
@@ -35,7 +38,7 @@ $$
P[p,q\gets \Pi_n;N\gets p\cdot q;e\gets \mathbb{Z}_{\phi(N)}^*;y\gets \mathbb{N}_n;x\gets \mathcal{A}(N,e,y);x^e=y\mod N]<\epsilon(n)
$$
#### Theorem RSA Algorithm
#### Theorem 53.2 (RSA Algorithm)
This is a collection of one-way functions
@@ -101,7 +104,7 @@ Let $y\in \mathbb{Z}_N^*$, letting $x=y^d\mod N$, where $d\equiv e^{-1}\mod \phi
$x^e\equiv (y^d)^e \equiv y\mod n$
Proof:
Proof:
It's easy to sample from $I$:
@@ -175,6 +178,15 @@ So the probability of B succeeds is equal to A succeeds, which $>\frac{1}{p(n)}$
Remaining question: Can $x$ be found without factoring $N$? $y=x^e\mod N$
### One-way permutation (Definition 55.1)
A collection function $\mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I}$ is a one-way permutation if
1. $\forall i,f_i$ is a permutation
2. $\mathcal{F}$ is a collection of one-way functions
_basically, a one-way permutation is a collection of one-way functions that maps $\{0,1\}^n$ to $\{0,1\}^n$ in a bijection way._
### Trapdoor permutations
Idea: $f:D\to R$ is a one-way permutation.
@@ -196,4 +208,3 @@ $\mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I}$
#### Theorem RSA is a trapdoor
RSA collection of trapdoor permutation with factorization $(p,q)$ of $N$, or $\phi(N)$, as trapdoor info $f$.