update typo and structures
This commit is contained in:
@@ -1,20 +1,23 @@
|
||||
# Lecture 10
|
||||
|
||||
## Continue
|
||||
## Chapter 2: Computational Hardness
|
||||
|
||||
### Discrete Log Assumption
|
||||
### Discrete Log Assumption (Assumption 52.2)
|
||||
|
||||
This is collection of one-way functions
|
||||
|
||||
$$
|
||||
p\gets \tilde\Pi_n(\textup{ safe primes }), p=2q+1
|
||||
$$
|
||||
|
||||
$$
|
||||
a\gets \mathbb{Z}*_{p};g=a^2(\textup{ make sure }g\neq 1)
|
||||
$$
|
||||
|
||||
$$
|
||||
f_{g,p}(x)=g^x\mod p
|
||||
$$
|
||||
|
||||
$$
|
||||
f:\mathbb{Z}_q\to \mathbb{Z}^*_p
|
||||
$$
|
||||
@@ -35,7 +38,7 @@ $$
|
||||
P[p,q\gets \Pi_n;N\gets p\cdot q;e\gets \mathbb{Z}_{\phi(N)}^*;y\gets \mathbb{N}_n;x\gets \mathcal{A}(N,e,y);x^e=y\mod N]<\epsilon(n)
|
||||
$$
|
||||
|
||||
#### Theorem RSA Algorithm
|
||||
#### Theorem 53.2 (RSA Algorithm)
|
||||
|
||||
This is a collection of one-way functions
|
||||
|
||||
@@ -101,7 +104,7 @@ Let $y\in \mathbb{Z}_N^*$, letting $x=y^d\mod N$, where $d\equiv e^{-1}\mod \phi
|
||||
|
||||
$x^e\equiv (y^d)^e \equiv y\mod n$
|
||||
|
||||
Proof:
|
||||
Proof:
|
||||
|
||||
It's easy to sample from $I$:
|
||||
|
||||
@@ -175,6 +178,15 @@ So the probability of B succeeds is equal to A succeeds, which $>\frac{1}{p(n)}$
|
||||
|
||||
Remaining question: Can $x$ be found without factoring $N$? $y=x^e\mod N$
|
||||
|
||||
### One-way permutation (Definition 55.1)
|
||||
|
||||
A collection function $\mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I}$ is a one-way permutation if
|
||||
|
||||
1. $\forall i,f_i$ is a permutation
|
||||
2. $\mathcal{F}$ is a collection of one-way functions
|
||||
|
||||
_basically, a one-way permutation is a collection of one-way functions that maps $\{0,1\}^n$ to $\{0,1\}^n$ in a bijection way._
|
||||
|
||||
### Trapdoor permutations
|
||||
|
||||
Idea: $f:D\to R$ is a one-way permutation.
|
||||
@@ -196,4 +208,3 @@ $\mathcal{F}=\{f_i:D_i\to R_i\}_{i\in I}$
|
||||
#### Theorem RSA is a trapdoor
|
||||
|
||||
RSA collection of trapdoor permutation with factorization $(p,q)$ of $N$, or $\phi(N)$, as trapdoor info $f$.
|
||||
|
||||
|
||||
Reference in New Issue
Block a user